

Q▪Kernel™
Quick Start Guide
Version 6.0-3363

Q▪Kernel™ is a product of QuasarSoft Ltd.

Q▪Kernel™ Quick Start Guide

© 2008-2015 Quasarsoft Ltd. qKernelQuickStartGuide V6.0-3363 page 2

License
Q-KernelFree Copyright (c) 2013-2015 QuasarSoft Ltd.

Q-KernelFree is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License (version 3) as published by the Free
Software Foundation and modified by the QuasarSoft Ltd. exception.

Q-KernelFree is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the full license text at the following link
<http://www.quasarsoft.com/license.html>

For the purpose of applying the license to this document, I consider "source code"
to refer to this document source (.docx) and "object code" to refer to the generated
file (.pdf).

QuasarSoft Ltd

312-5th Avenue Suite No. 354

Cochrane Alberta T4C 2E3

Canada

Tel. +1 (403) 450 3482

www.quasarsoft.com

The QuasarSoft Ltd. EXCEPTION

You may not exercise any of the rights granted to You in any manner
that is primarily intended for or directed toward commercial
advantage or private monetary compensation. The exchange of the
Program for other copyrighted works by means of digital file-sharing
or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation,
provided there is no payment of any monetary compensation in
connection with the exchange of copyrighted works.

http://www.quasarsoft.com/license.html
http://www.quasarsoft.com/

Q▪Kernel™ Quick Start Guide

© 2008-2015 Quasarsoft Ltd. qKernelQuickStartGuide V6.0-3363 page 3

Starting with Q▪Kernel™
The simplest way to start with Q▪Kernel™ is to run the Blinky example and play with
it. To do this first install the code and then use MPLABX to run the code.

Installing Q▪Kernel™
Download the code from the Website. This is a zip file. Extract the zip file with your
favorite tool and place it in a directory structure you prefer, for example
“c:\qKernel\”. The unzip operation creates a directory for the version and under this
3 directories. The structure would look as follows:

V3363
 -------- Documentation
 -------- qViewer
 -------- Source
 -------- ------ Pic24_MPLAB.X
 -------- ------ Pic32_MPLAB.X
 -------- ------ qCrc32c.c
 -------- ------ qDateTime.c
………
………
………
……… All other sources
………
………
 -------- ------ qUSec.c

You can find the documentation under the documentation folder.

Running Blinky
Open MPLAB-X and go to open project, select the installation directory and select
first the source, then extract the port directory as shown in the next screen shots.

Q▪Kernel™ Quick Start Guide

© 2008-2015 Quasarsoft Ltd. qKernelQuickStartGuide V6.0-3363 page 4

Now click the + to open the source

Now click the + to open the PIC24 or PIC32 port

Q▪Kernel™ Quick Start Guide

© 2008-2015 Quasarsoft Ltd. qKernelQuickStartGuide V6.0-3363 page 5

Now select Blinky.X

And press the open Open Project button.

You are ready to look at your first program.

Q▪Kernel™ Quick Start Guide

© 2008-2015 Quasarsoft Ltd. qKernelQuickStartGuide V6.0-3363 page 6

How to continue?
There are a number of manuals that you should read. Start with the User Guide.
Read up about threads, how to create them, sleep, etc. It is very strait forward.

Try to use another mechanism. The most use mechanism is the Mutex, which stands
for Mutual Exclusive. If you want to protect access to a specific memory variable like
a counter, you have to lock the mutex, increase the counter and unlock it. If you
have a multi-threaded application you have to protect your global variable. Don’t
forget that

If you have an existing application have a very good look to all your global variable.
A well written application does not have much global variable and they are protected.
Often you will see that global variable don’t have to be global, they can be static to
a peace of code.

If you have never worked with a RTOS it feel a bit complicated but over time you will
learn that it is actually very simple.

Look at Blinky. There are two threads and both threads don’t have to know the timing
of the other. If you don’t have an RTOS you have to design the timing of your system.
While Blinky is simple it shows that every thread only cares about its own timing.

Write the Blinky functionality without a RTOS and you will see that a RTOS helps you
to get the timing right.

If you have done that change the program to a blink time of 214 uSec for LED1 and
34523 uSec for LED2. Also make the same changes in Blinky with Q-Kernel.

Blinking 2 LED’s shows how a RTOS can
help because every LED thread takes care

of its own timing.
Without a RTOS the user has to manage the

timing of the system as a whole.

