

Q▪Kernel
Thread-Metric RTOS Test Suite
Version 6.0-3343

Q▪Kernel is a product of Quasarsoft Ltd.

Q▪Kernel Thread-Metric RTOS Test Suite

© 2008-2013 Quasarsoft Ltd. QKernelTM page 2

License
Q-Kernel-Free Copyright (c) 2013 QuasarSoft Ltd.

Q-Kernel-Free is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License (version 3) as published by the Free
Software Foundation and modified by the QuasarSoft Ltd. exception.

Q-Kernel-Free is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the full license text at the following link
<http://www.quasarsoft.com/license.html>

For the purpose of applying the license to this document, I consider "source code"
to refer to this document source (.docx) and "object code" to refer to the
generated file (.pdf).

Quasarsoft Ltd
312 5th Ave Bay 14
Suite 354
Cochrane Alberta T4C 2E3
Canada
Tel. +1 (403) 450 3482
www.quasarsoft.com

The QuasarSoft Ltd. EXCEPTION

You may not exercise any of the rights granted to You in any
manner that is primarily intended for or directed toward commercial
advantage or private monetary compensation. The exchange of the
Program for other copyrighted works by means of digital file-sharing
or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation,
provided there is no payment of any monetary compensation in
connection with the exchange of copyrighted works.

http://www.quasarsoft.com/license.html
http://www.quasarsoft.com/

Q▪Kernel Thread-Metric RTOS Test Suite

© 2008-2013 Quasarsoft Ltd. QKernelTM page 3

About this document
This document describes the Thread-Metric benchmark suite for Q▪Kernel version
V6.0

The Thread-Metric benchmark suite is a freely-available set of benchmarks that
measures many aspects of RTOS performance, helping developers identify the
bottlenecks in the real-time performance of their applications. Criteria such as
interrupt response, context-switching, message passing, thread scheduling,
memory allocation, and synchronization are particularly important for
microcontroller-based designs where efficiency and a small, fast RTOS makes a
significant difference. The Thread-Metric benchmark suite source code is available
for free download from http://www.embedded.com/code/2007code.htm

The Thread-Metric benchmark suite is written by Express Logic, Inc, 11423 West
Bernardo Court, San Diego, CA USA

http://www.embedded.com/code/2007code.htm

Q▪Kernel Thread-Metric RTOS Test Suite

© 2008-2013 Quasarsoft Ltd. QKernelTM page 4

1. Description of the test implementation ... 5
1.1. Hardware ... 5
1.2. Software .. 5

2. Test results and implementation .. 6
2.1. Cooperative Scheduling ... 8
2.2. Pre-emptive Scheduling ... 8
2.3. Interrupt Processing .. 8
2.4. Interrupt Pre-emptive processing .. 9
2.5. Message Processing... 9
2.6. Synchronization processing .. 9
2.7. Memory allocation ... 10

Q▪Kernel Thread-Metric RTOS Test Suite

© 2008-2013 Quasarsoft Ltd. QKernelTM page 5

1. Description of the test implementation
The Vendor (in this case Quasarsoft Ltd.) needs to implement a porting layer to
make the benchmark working. Several aspects of the implementation are describe
in the next chapters.

1.1. Hardware
The tests are executed on the Explorer-16 board manufactured by Microchip. A PIC
24HJ256GP610 is placed on the board for testing. The board is connected to a
Real-ICE that loads the program on the chip. The microprocessor run at 80 MHz
producing 40MIPS.

1.2. Software
Quasarsoft has implemented the porting layer with version 6.0-3343 of Q▪Kernel.
The porting layer (tm_proting_layer.c) contains all code with the exception of
raising the interrupts. Raising the interrupt (_INT0IF=1) is implemented in the files
tm_interrupt_processing_text.c and tm_interrupt_preemtion_processing_text.c.

The porting layer can execute 7 different tests by changing the test number in the
file and compile and run the test.

1.3. Results in spreadsheet
On our web-site you can find a spreadsheet with the calculation of all results and
more information how the systems compare.

1.4. Participants
Q▪Kernel is compared to AVIX, Thread-X, uc/OS-II, TNKernel and AVA.
FreeRTOS™ is not in the list because the license agreement does not allow us to
compare it. It is the only system that has this clause in their license agreement.
We did the tests and it is pretty clear why that clause is there.

Q▪Kernel Thread-Metric RTOS Test Suite

© 2008-2013 Quasarsoft Ltd. QKernelTM page 6

2. Test results and implementation
Q▪Kernel is one of the best performing RTOS’s, because it is tick-less and it uses
the segmented interrupt architecture. The results are in the following table. It
should be clear that Q▪Kernel and AVIX are outperforming all other products. Both
implement the segmented interrupt architecture. FreeRTOS is not in the list
because the license agreement prohibits us from publishing benchmarks. Please
check it yourself and it will be clear why they don’t allow us to publish their
performance numbers.

 Cooperative
Scheduling

Preemptive
Scheduling

Interrupt
Processing

Interrupt
Preemptive
Processing

Message
Processing

Synchronization
Processing

Memory
Processing

Q▪Kernel 6.0 17,141,251 11,741,503 18,461,234 6,315,823 10,908,076 32,431,922 22,221,851

AVIX 4.0 18,730,514 11,460,380 17,125,013 6,023,870 8,151,857 27,878,435 12,618,419

ThreadX 11,847,800 4,870,885 6,918,050 3,052,151 6,928,383 15,337,354 12,863,624

uc/OS-II 3,909,085 5,259,998 7,387,612 10,293,318 6,814,817

TNKernel 4,138,692 7,784,052 3,180,224 5,722,266 13,623,702 9,745,907

AVA 1,724,948 5,207,762 1,260,190 2,761,154 7,514,799 10,235,182

Q▪Kernel Thread-Metric RTOS Test Suite

© 2008-2013 Quasarsoft Ltd. QKernelTM page 7

While both AVIX and Q▪Kernel are based on the segmented interrupt architecture,
differences between the two products are significant. The scheduling engine of
Q▪Kernel is more complex because it also has to schedule fibers. The scheduling
engine has to check for fibers because it does not know that they are not used.
AVIX does not support fibers so they don’t have to be checked. Q▪Kernel uses a
number of linked lists for thread scheduling while AVIX uses a list for every
priority. This improves the scheduling performance but requires more RAM and
Flash. More variation in priorities will increase the memory footprint, therefore
AVIX requires the developer to configure a maximum priority at the cost of the
RAM foot-print. AVIX also uses more flash. The following list compares the size of
the Thread-Metric suite between Q▪Kernel and AVIX.

RTOS and library options Flash size (words) TM program1

AVIX 8505

Q▪Kernel 7418 (14% smaller than AVIX)

While AVIX can keep up with Q▪Kernel (average 18% slower), the other systems
are significant slower. The reason for this is that they are much older and use a
different programming paradigm. Newer processors must keep their pipe-line full
so calling is an expensive operations. Q▪Kernel tries to execute as much as
possible code inline. A good example is de-allocating memory. The function is only
8 cycles but calling and returning requires an additional 6 cycles. So the inline
function requires 8 cycles compared to 14 cycles. That’s not all the savings. If a
functions is used the compiler cannot trust registers W0 to W7. The inline function
only uses 2 register so the compiler has 6 more registers to optimize code around
the de-allocation operation. This inline approach cost a bit more flash, 3 program
words versus 8 program words. How is it possible that Q▪Kernel is still smaller
than its competitors? This is because Q▪Kernel consists of about 200 small
modules and only the modules that are used are linked into the end-results.

Some vendors have changed the code of the test software so it will fit their product
better and produces better results. One example of this are code changes where
the same functions is called from an ISR or a thread. This prevents testing the
interrupt level and calling the right module. All Q▪Kernel functions can be called
from interrupt handlers or threads and no developer action is required.

1 This is the size in words and compiled with C30.

Q▪Kernel can do almost 800,000 context
switches per second on a 40MIPS PIC24

which is 1.28 µSec per switch.

Q▪Kernel Thread-Metric RTOS Test Suite

© 2008-2013 Quasarsoft Ltd. QKernelTM page 8

2.1. Cooperative Scheduling
Q▪Kernel can implement cooperative scheduling with threads or fibers. Fibers are
a better solution for cooperative multi-threading and significant faster but
Quasarsoft has implemented the test with threads to comply with the intentions of
the Thread-Metric tests. This test is implemented with the Q▪Kernel function
qThrYield(). This function removes the current thread from the top of the ready list
and moves the thread to the end of the list of threads with the same priority and
switches the context.

Cooperative scheduling is included in the test suite but is hardly used in embedded
applications. Q▪Kernel is optimized for preemptive scheduling.

2.2. Pre-emptive Scheduling
Pre-emptive scheduling is a type of scheduling where the thread is stopped at any
possible time at any possible instruction and another thread is activated. In other
words, a thread switch occurs.

Q▪Kernel implements pre-emptive scheduling with the functions qThrSuspendV4()2
and qThrResumeV4(). The function qThrSuspendV4() removes the thread from the
ready list into a hibernate state and does a context switch. The function
qThrResumeV4() moves a thread out of the hibernate state into the ready list and
switches the context if the top of the ready list contains a thread with a higher
priority than the running thread.

2.3. Interrupt Processing
Interrupt procession is implemented with a C30/XC16 style interrupt handler and
the functions qSemAcquireFast3() and qSemReleaseFast(). One thread generates
an interrupt. The interrupt handler calls the tm_interrupt_handler() and that
function releases the semaphore. The thread that generated the interrupt acquires
the semaphore.

The C30 style interrupt handler uses the shadow registers and does not save the
PSVPAG because there is only one PSV window required. All Q▪Kernel signaling
function can be called from within an ISR so the release of the semaphore is done
from within the ISR.

2 We use Version4 functions because this functionality fits the test better. The thread resume and suspend
functions of version 6 allows the developer to communicate between the two threads.
3 We use “Fast” functions for optimized performance. These functions are functional the same as the “non-fast”
functions but don’t do extensive parameter testing.

Q▪Kernel can do about 390,000 dual context
switches per second on a 40MIPS PIC24

which is 1.28 µSec per switch.

Q▪Kernel Thread-Metric RTOS Test Suite

© 2008-2013 Quasarsoft Ltd. QKernelTM page 9

2.4. Interrupt Pre-emptive processing
In preemptive multi-threading, an interrupt can cause preemptive activity. In fact,
an interrupt service routine preempts execution of code while it services the
interrupt. However, while it simply returns back to the point of interruption,
Q▪Kernel could intercept and resume execution in another thread.

Interrupt pre-emptive procession is implemented with a C30 style interrupt handler
and the functions qThrSuspend() and qThrResume(). One thread generates an
interrupt. The interrupt handler calls the tm_interrupt_preemption_handler() and
that function calls qThrResume(). This function move the thread from the waiting
list into the ready list. Q▪Kernel will become active at the end of the interrupt
handler and will pre-empt the current thread and run the new thread.

The C30 style interrupt handler uses the shadow registers and does not save the
PSVPAG because there is only one PSV window required. All Q▪Kernel signaling
function can be called from within an ISR so the resume of a waiting thread is done
from within the ISR.

2.5. Message Processing
Q▪Kernel has two implementations for sending and receiving messages. The most
advanced method uses managed messages where Q▪Kernel controls the life-time
of a message and will do all memory management. This method allows variable
sized messages and will move messages by reference and not by value. It is also
possible to allocate and de-allocate message from interrupt handlers but the
Thread-Metric test suite does not implement that.

The second implementation (pipes) send message by value and don't keep a use
count. Because the second method complies more with the intentions of the
Thread-Metric tests we have used pipes. Our implementation of pipes is completely
in assembler for the best performance.

While the Thread-Metric test suite calls the send and receive from only one thread
the Q▪Kernel functions implement the full spectrum of RTOS functionality like
testing if a potential blocking function need to be called. The functions also contain
critical section handling to synchronize thread access.

2.6. Synchronization processing
Q▪Kernel has multiple mechanisms for synchronization. The mechanism that
complies most with the intentions of the Thread-Metric tests are semaphores.
Conceptually, a semaphore maintains a set of permits. Each qSemAcquireFast()
blocks if necessary until a permit is available, and then takes it. Each
qSemReleaseFast() adds a permit, potentially releasing a blocking acquirer.
However, no actual permit objects are used; the Semaphore just keeps a count of
the number available and acts accordingly.

Q▪Kernel can process more than 350,000
messages per second on a 40MIPS PIC24.

Q▪Kernel Thread-Metric RTOS Test Suite

© 2008-2013 Quasarsoft Ltd. QKernelTM page 10

While the Thread-Metric test suite calls the acquire and release functions from only
one thread the Q▪Kernel functions implement the full spectrum of RTOS
functionality like blocking and critical section handling to synchronize thread
access.

2.7. Memory allocation
Because Q▪Kernel manages all its resources dynamically it requires a dynamic
memory management system. While most competitors provide simple fixed size
memory blocks Q▪Kernel offers real dynamic memory allocation without external
fragmentation called Variable Memory Blocks. This memory is organized in pools
and can be accessed by size or by pool. Accessing memory by pool is extremely
fast and 100% deterministic. Q▪Kernel also provides two other memory allocation
mechanisms, “Allocate Only Heap” and “Fixed Memory Blocks”. Fixed Memory
Blocks can be allocated and de-allocated from interrupt handlers.

The tests can be performed with fixed or variable memory blocks and the required
code is included in the porting layer. The memory processing numbers are
22,221,851 for variable blocks and 18,180,129 for fixed memory blocks.

Some systems provide blocking functionality for memory allocation. The Thread-
Metric test suite does not require this functionality and some vendors, including
ThreadX, implement the test without blocking functionality by specifying a
“NO_WAIT” parameter and will return an error if memory is not available. The
Q▪Kernel implementation will first try to allocate a block from the pool and if no
memory block is available it will try to allocate a block from the “allocate only
heap” and will extend the pool. The system will throw and error if everything fails,
just like ThreadX. This behavior follows the more dynamic nature of the Q▪Kernel
memory management.

Memory allocation and de-allocation is 100% deterministic if memory blocks are
created ahead of time because this prevents dynamically extending the pool. This
is how the test is executed.

Q▪Kernel can synchronize more than one
million processing request per second on a

40MIPS PIC24.

Q▪Kernel can allocate and free more than
740,000 memory blocks per second on a

40MIPS PIC24.
Memory allocation is one of the most used
functions and Q▪Kernel is more than 75%

faster than the second best one.

	1. Description of the test implementation
	1.1. Hardware
	1.2. Software
	1.3. Results in spreadsheet
	1.4. Participants

	2. Test results and implementation
	2.1. Cooperative Scheduling
	2.2. Pre-emptive Scheduling
	2.3. Interrupt Processing
	2.4. Interrupt Pre-emptive processing
	2.5. Message Processing
	2.6. Synchronization processing
	2.7. Memory allocation

