

Q▪Kernel™
Pic24 dsPIC Porting guide
Version 6.0-3363

Q▪Kernel™ is a product of QuasarSoft Ltd.

Q▪Kernel™ Pic24/dsPIC Porting Guide

© 2008-2015 Quasarsoft Ltd. qKernelPic24dsPIC.docx V6.0-3353 page 2

License
Q-KernelFree Copyright (c) 2013 QuasarSoft Ltd.

Q-KernelFree is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License (version 3) as published by the Free
Software Foundation and modified by the QuasarSoft Ltd. exception.

Q-KernelFree is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the full license text at the following link
<http://www.quasarsoft.com/license.html>

For the purpose of applying the license to this document, I consider "source code"
to refer to this document source (.docx) and "object code" to refer to the generated
file (.pdf).

QuasarSoft Ltd

312-5th Avenue Suite No. 354

Cochrane Alberta T4C 2E3

Canada

Tel. +1 (403) 450 3482

www.quasarsoft.com

The QuasarSoft Ltd. EXCEPTION

You may not exercise any of the rights granted to You in any manner
that is primarily intended for or directed toward commercial
advantage or private monetary compensation. The exchange of the
Program for other copyrighted works by means of digital file-sharing
or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation,
provided there is no payment of any monetary compensation in
connection with the exchange of copyrighted works.

http://www.quasarsoft.com/license.html
http://www.quasarsoft.com/

Q▪Kernel™ Pic24/dsPIC Porting Guide

© 2008-2015 Quasarsoft Ltd. qKernelPic24dsPIC.docx V6.0-3353 page 3

About this Document
This document assumes that you already have background knowledge of the
following:

• The software tools used for building your application, mainly the compiler and
linker

• The C Programming language

• The processor

If you feel that your knowledge of C is not sufficient, we recommend The C
Programming Language by Kernighan and Richie (ISBN 0-13-1103628), which
describes the standard in C-programming and, in newer editions, covers the ANSI
C standard.

The Q▪Kernel™ Reference Guide is available to learn the API and the Q▪Kernel™
User Guide to learn how to use Q▪Kernel™.

How to Use this Manual
The intention of this manual is to give you a detailed description for the
PIC24/dsPIC

Q▪Kernel™ Pic24/dsPIC Porting Guide

© 2008-2015 Quasarsoft Ltd. qKernelPic24dsPIC.docx V6.0-3353 page 4

1. Introduction to PIC24 and dsPIC .. 5
 Differences between MCU’s .. 5

 Upper 32Kb Data Space Window ... 5
 Table Page (TBLPAG) ... 5
 DSP Unit .. 6

 Grouping the different MCU’s .. 6
 Generic group ... 6
 GenericDA group ... 6
 GenericEP group .. 6

 Pre-build libraries .. 7
2. Installation .. 8
3. Adding Q▪Kernel™ to your application ... 9

 Using an object library ... 9
 Using a project library ... 9
 Using your own object library ... 9
 Creating a new application ... 10

4. Resources used by Q▪Kernel™ ... 17
 Specific Errors ... 17
 Stack Limiting Features .. 17
 Interrupts ... 17

Q▪Kernel™ Pic24/dsPIC Porting Guide

© 2008-2015 Quasarsoft Ltd. qKernelPic24dsPIC.docx V6.0-3353 page 5

1. Introduction to PIC24 and dsPIC
Q▪Kernel™ is a Tick-Less Dual-Mode Real Time Operating System (RTOS)
sometimes referred to as a kernel. Q▪Kernel™ is specially created for the modern
processors like the PIC24 and dsPIC and fully exploits the power of these
processors.

Q▪Kernel™ supports all 16-bit PIC microprocessors including the dsPICs. The
minimum system requirements are 2kb RAM and 32Kb Flash. Q▪Kernel™ supports
the following compilers:

• MPLAB-X Version 1.8 or higher

• XC16 Compiler Version 1.1 or higher.

• C30 compiler version 3.31 or higher

• MPLAB8.x is supported but project files are not included.

The system is tested with MPLAB-X 2.00.

 Differences between MCU’s
Not all version of the PIC24 and dsPIC are the same. The EP models have a slightly
different instruction set and op-code. The other models can be separated how they
address the upper 32kB address space.

 Upper 32Kb Data Space Window

The 16-bit PIC micro controllers divide their data address space in two 32 Kb
windows. The lower window maps the Special Function Registers (SFR’s) and the
RAM. The second window mapping depends on the type of processor.

Most of the controllers map flash memory for constant data. This process is called
program space visibility because part of the program space is visible in data
memory and the register PSVPAG specifies where in flash the 32Kb is mapped. This
is limited to 32Kb. If there is more than 32Kb of constant data the PSVPAG must
be maintained. The user is responsible that the PSVPAG is maintained and pointers
into the PSV space cannot be used by more than one thread without special
facilities. Pointers in RAM don’t have that problem because they always point to
the lower 32 Kb for all threads and fibers. Please read the XC16 or C30 user manual
that describes this process and all options.

Newer controllers implement Extended Data Space. This feature can map flash or
ram in the window. The system uses separate registers for read and writes.
(DSRPAG/DSWPAG)

The system will persist PSVPAG or DSRPAG/DSWPAG in the context of the thread
and fibers. The Q▪Kernel™ interrupts qISR() and qISR_FAST() also persist this
information. The developer is responsible for saving and restoring the information
in native interrupts.

 Table Page (TBLPAG)

The 16-bit PIC micro controllers have the ability to access any flash in the controller
by its 24-bit address. The TBLPAG register and some special instructions are used
facilitate this. This register has to be saved during context switches if multiple

Q▪Kernel™ Pic24/dsPIC Porting Guide

© 2008-2015 Quasarsoft Ltd. qKernelPic24dsPIC.docx V6.0-3353 page 6

threads use the TBLPAG. As described above the TBLPAG register is persisted
together with the PSVPAG register on controllers that have a PSVPAG register.

Controllers with Extended Data Space don’t have to use the TBLPAG but can use
the far superior Extended Data Space feature instead. Using the TBLPAG in multiple
threads and fibers is still possible by using it within a critical section. The TBLPAG
can be used in interrupts on those controllers but the developer is responsible for
saving and restoring the TBLPAG register in both Q▪Kernel™ interrupts and native
interrupts.

 DSP Unit

The DSP unit is only available in the dsPIC30 and dsPIC33. The DSP functionality
can only be used in fibers and not in threads. This is the developers’ responsibility
and the system will and cannot check this.

 Grouping the different MCU’s
Q▪Kernel™ comes in source code and as an object library. Because different MCU’s
use different memory mapping methods and not all instructions are supported by
all MCU’s Microchip has divided the MCU is 3 device groups. See
Readme_XC16.html in the doc directory. The following groups are defined:

• Generic core devices

• Generic “DA” devices

• Generic “EP” devices

The simplest way to check to which group your device belongs is to answer he
follow questions:

1. If the device is a PIC24EP or dsPIC33EP it belongs to the GenericEP group.

2. If the device has a PSVPAG register it belongs to the Generic group

3. All other devices belong to the GenericDA group

 Generic group

These are MCU’s with a PSVPAG register to address the top 32KB of the address
space. All older smaller MCU fall in this category. Examples of those MCU’s are
PIC24FJ128GA010 and dsPIC33FJ64GP204.

 GenericDA group

These are MCU’s with a DSWPAG and DSRPAG registers to address the top 32KB
of the address space. Most of the newer larger MCU’s fall in this category. Examples
of those MCU’s are PIC24FJ256DA210 and PIC24FJ64GA310.

 GenericEP group

These are MCU’s with a DSWPAG and DSRPAG registers to address the top 32KB
of the address space. Their instruction set and op-code is different than the
previous groups. These are the MCU’s with EP in their name like PIC24EP256GU810
and dsPIC33EP64MC202.

Q▪Kernel™ Pic24/dsPIC Porting Guide

© 2008-2015 Quasarsoft Ltd. qKernelPic24dsPIC.docx V6.0-3353 page 7

 Pre-build libraries
This port comes with 4 prebuild libraries. Generic, GenericDA, GenericEP and
ThreadMetric. The first 3 are for the different MCU groups and are compiled with
parameter checking and the small code (-s) optimization. ThreadMetric is compiled
with the fastest code optimization (-3) and no parameter checking.

Q▪Kernel™ Pic24/dsPIC Porting Guide

© 2008-2015 Quasarsoft Ltd. qKernelPic24dsPIC.docx V6.0-3353 page 8

2. Installation
Q▪Kernel™ is distributed as a zip file with the name qKernelV3353.zip. The version
contains all versions of Q▪Kernel™ in that build. The last 4 digits in the name is the
build number. Extract the file into a main directory like C:\qKernelFree, but it can
be any drive or name because all references are relative. An example of the
directory structure is specified below.

V3353
 ----- Documentation
 ----- Source
 ----- ------ Pic24_MPLAB.X (PIC24 /dsPIC port)
 ----- ------ ----- Blinky.X (Test program)
 ----- ------ ----- ----- dist
 ----- ------ ----- ----- ------default
 ----- ------ ----- ----- ------------ production
 ----- ------ ----- ----- nbproject
 ----- ------ ----- dist (Distribution for the Q▪Kernel™ libraries)
 ----- ------ ----- ----- default
 ----- ------ ----- ----- ------production (Library Pic24_MPLAB.X.a)
 ----- ------ ----- ----- Generic
 ----- ------ ----- ----- ------production (Library Pic24_MPLAB.X.a)
 ----- ------ ----- ----- GenericDA
 ----- ------ ----- ----- ------production (Library Pic24_MPLAB.X.a)
 ----- ------ ----- ----- GenericEP
 ----- ------ ----- ----- ------production (Library Pic24_MPLAB.X.a)
 ----- ------ ----- ----- ThreadMetric
 ----- ------ ----- ----- ------production (Library Pic24_MPLAB.X.a)
 ----- ------ ----- nbproject
 ----- ------ ----- ThreadMetric.X
 ----- ------ ----- ----- dist
 ----- ------ ----- ----- ------default
 ----- ------ ----- ----- ------------ production
 ----- ------ ----- ----- nbproject
 ----- ------ ----- ----- ------private
 ----- ------ Pic32_MPLAB.X (PIC32 port)
 ----- ------ ----- Blinky.X (Test program)
 ----- ------ ----- ----- dist
 ----- ------ ----- ----- ------default
 ----- ------ ----- ----- ------------ production
 ----- ------ ----- ----- nbproject
 ----- ------ ----- dist (Distribution for the Q▪Kernel™ libraries)
 ----- ------ ----- ----- default
 ----- ------ ----- ----- ------production (Library Pic24_MPLAB.X.a)
 ----- ------ ----- ----- Generic
 ----- ------ ----- ----- ------production (Library Pic24_MPLAB.X.a)
 ----- ------ ----- nbproject

Q▪Kernel™ Pic24/dsPIC Porting Guide

© 2008-2015 Quasarsoft Ltd. qKernelPic24dsPIC.docx V6.0-3353 page 9

3. Adding Q▪Kernel™ to your application
Q▪Kernel™ can be included as a project library or as an object library. We
recommend to use the object library because this prevents building the library
every time.

Your application need to include “qKernel.h” in all source files in your project. The
best way to do that is to add the path to this file in the “C include dirs.” of the
compiler. Select your project properties, select xc16-gcc and select option category
“PreProcessing and messages” Then add the path to “C include dirs.”. You can also
just specify the full path.

 Using an object library
As described above you can add Q▪Kernel™ as an object library. Include one of the
standard configurations that is included in the distribution. The libraries are in the
Generic, GenericDA or GenericEP directories. The libraries are compiled with -s as
optimization level, kernel timer is TMR4/TMR5 and the full parameter checking.

 Using a project library
You create your application and include Q▪Kernel™ as a library project. You go to
properties of your project and click libraries. There you click “Add library Project”
and select qKernel.X. In this case the source will be included and MPLAB will
compile the source if required. You have to specify the configuration, for things like
MCU, optimization level, etc.

Q▪Kernel™ consists of many files so only the code that is required will be in flash.
This makes building slow and even if a full build executes sporadic it is advisable
to use the full computer potential. You can improve the build time by selecting
Options from the main menu, then Embedded and select the tab “Project Options”
Select the option “Use parallel make” to speed up the build. It will use all your
cores of your processors.

You can use all other compile and build options, like memory model, optimization
levels, etc. for your project or Q▪Kernel™ so it is very flexible.

 Using your own object library
First create a configuration within the Q▪Kernel™ distribution and set your compile
options. Build the system and include the created object library in your application.

Improve the compile speed by selecting the
option “Use parallel make” and use all the

available cores

Q▪Kernel™ Pic24/dsPIC Porting Guide

© 2008-2015 Quasarsoft Ltd. qKernelPic24dsPIC.docx V6.0-3353 page 10

 Creating a new application
This example creates a simple application with a . While it looks complicated the
whole thing is very simple. See the following screen shots.

Start a new project

Q▪Kernel™ Pic24/dsPIC Porting Guide

© 2008-2015 Quasarsoft Ltd. qKernelPic24dsPIC.docx V6.0-3353 page 11

Select the processor

Select the debugging tool (ICD3)

Q▪Kernel™ Pic24/dsPIC Porting Guide

© 2008-2015 Quasarsoft Ltd. qKernelPic24dsPIC.docx V6.0-3353 page 12

Select a compiler

And the project name and folder (See that we use the D: drive)

Q▪Kernel™ Pic24/dsPIC Porting Guide

© 2008-2015 Quasarsoft Ltd. qKernelPic24dsPIC.docx V6.0-3353 page 13

Add an object library directory (We use GenericEDS because that’s our processor)

And select the file itself by pressing the Add button

Q▪Kernel™ Pic24/dsPIC Porting Guide

© 2008-2015 Quasarsoft Ltd. qKernelPic24dsPIC.docx V6.0-3353 page 14

Now create a main c file and add some code like this example (See blinky)

Q▪Kernel™ Pic24/dsPIC Porting Guide

© 2008-2015 Quasarsoft Ltd. qKernelPic24dsPIC.docx V6.0-3353 page 15

During typing you can use <ctrl><space> to find the function name.

During typing MPLAB helps you with the parameters

Q▪Kernel™ Pic24/dsPIC Porting Guide

© 2008-2015 Quasarsoft Ltd. qKernelPic24dsPIC.docx V6.0-3353 page 16

Some remarks:

1. The #include statement (line 3) in the program needs to find file qKernel.h
in the porting directory. In the Blinky.X example we use a relative
specification because both Q▪Kernel™ and the project are on the C: drive.
Use the “preprocessing and messages” dialog and specify the “C include
dirs.”

2. Because this is a PIC24 with a DSRPAG and DSWPAG we use the GenericDA
configuration. (the picture uses the old name GenericEDS)

3. While it is possible to add Q▪Kernel™ as a project we do not recommend
this because it will compile and build the library every time.

4. Even if Q▪Kernel™ is included as an object library (versus a project) the
debugger will find all sources related to the object and the cursor (green
line) will show the Q▪Kernel™ code.

Q▪Kernel™ Pic24/dsPIC Porting Guide

© 2008-2015 Quasarsoft Ltd. qKernelPic24dsPIC.docx V6.0-3353 page 17

4. Resources used by Q▪Kernel™
Q▪Kernel™ will use a 32-bit timer to control its timing. The default timer is
TMR4/TMR5 but this can be changed. The PIC24 timer interrupt is TMR5 is used in
32-bit mode and this will free-up TMR4 interrupt, which is used as kernel interrupt.

 Specific Errors

The Q▪Kernel™ code signals traps by calling the qErrNotify() function. The following
traps are included as Q▪Kernel™ errors:

• OscillatorFail (0x1000)

• AddressError (0x1001)

• HardTrapError (0x1002)

• StackError (0x1003)

• MathError (0x1004)

• DMACError (0x1005)

• SoftTrapError (0x1006)

 Stack Limiting Features

The stack limiting features of the PIC24/dsPIC architecture are used extensively.
Every individual thread and the interrupt stack keep track of its own stack-limit by
manipulating the SPLIM register. This feature does not prevent stack errors but
makes it simpler to detect them.

 Interrupts

The Q▪Kernel™ version for the PIC24/dsPIC will never disables interrupts and has
a fixed interrupt latency of 4 cycles (PIC24F and H). The EP versions have a fixed
or variable interrupt latency.

The qISR() function uses 6 byte on the thread stack (2 for WREG0 and 4 for the
return address) and it needs 18 cycles to switch the stack and start execution of
the interrupt code. This is about 6 cycles more compared to native interrupt
handler. The difference is the switch to the interrupt stack. Without this all thread
has to add stack-space for the interrupts.

The qISR_FAST() function uses 4 byte on the thread stack (for the return address)
and it needs 15 cycles to switch the stack and start execution of the interrupt code.
This is about 6 cycles more compared to native interrupt handler. The difference is
the switch to the interrupt stack. Without this all thread has to add stack-space for
the interrupts.

	1. Introduction to PIC24 and dsPIC
	1.1. Differences between MCU’s
	1.1.1 Upper 32Kb Data Space Window
	1.1.2 Table Page (TBLPAG)
	1.1.3 DSP Unit

	1.2. Grouping the different MCU’s
	1.2.1 Generic group
	1.2.2 GenericDA group
	1.2.3 GenericEP group

	1.3. Pre-build libraries

	2. Installation
	3. Adding Q▪Kernel™ to your application
	3.1. Using an object library
	3.2. Using a project library
	3.3. Using your own object library
	3.4. Creating a new application

	4. Resources used by Q▪Kernel™
	4.1.1 Specific Errors
	4.1.2 Stack Limiting Features
	4.1.3 Interrupts

