

Q▪Kernel™
Pic32 Porting guide
Version 6.0-3352

Q▪Kernel™ is a product of QuasarSoft Ltd.

Q▪Kernel™ User Guide

© 2014 Quasarsoft Ltd. qKernelPic32.docx V6.0-3352 page 2

License
Q-KernelFree Copyright (c) 2013 QuasarSoft Ltd.

Q-KernelFree is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License (version 3) as published by the Free
Software Foundation and modified by the QuasarSoft Ltd. exception.

Q-KernelFree is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the full license text at the following link
<http://www.quasarsoft.com/license.html>

For the purpose of applying the license to this document, I consider "source code"
to refer to this document source (.docx) and "object code" to refer to the generated
file (.pdf).

QuasarSoft Ltd

312-5th Avenue Suite No. 354

Cochrane Alberta T4C 2E3

Canada

Tel. +1 (403) 450 3482

www.quasarsoft.com

The QuasarSoft Ltd. EXCEPTION

You may not exercise any of the rights granted to You in any manner
that is primarily intended for or directed toward commercial
advantage or private monetary compensation. The exchange of the
Program for other copyrighted works by means of digital file-sharing
or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation,
provided there is no payment of any monetary compensation in
connection with the exchange of copyrighted works.

http://www.quasarsoft.com/license.html
http://www.quasarsoft.com/

Q▪Kernel™ User Guide

© 2014 Quasarsoft Ltd. qKernelPic32.docx V6.0-3352 page 3

About this Document
This document assumes that you already have background knowledge of the
following:

• The software tools used for building your application, mainly the compiler and
linker

• The C Programming language

• The processor

If you feel that your knowledge of C is not sufficient, we recommend The C
Programming Language by Kernighan and Richie (ISBN 0-13-1103628), which
describes the standard in C-programming and, in newer editions, covers the ANSI
C standard.

The Q▪Kernel™ Reference Guide is available to learn the API and the Q▪Kernel™
User Guide to learn how to use Q▪Kernel™.

How to Use this Manual
The intention of this manual is to give you a detailed description for the PIC32.

Q▪Kernel™ User Guide

© 2014 Quasarsoft Ltd. qKernelPic32.docx V6.0-3352 page 4

1. Introduction to PIC32 ... 5
 Supported PIC32 series ... 5

2. Resources used by Q▪Kernel™ ... 6
 Stack Limiting Features ... 6

3. Architecture .. 7
 Interrupts .. 7

 Interrupt stack memory savings .. 7
 Context switching ... 8

4. Adding Q▪Kernel™ to your application ... 9
 Using an object library ... 10

Q▪Kernel™ User Guide

© 2014 Quasarsoft Ltd. qKernelPic32.docx V6.0-3352 page 5

1. Introduction to PIC32
Q▪Kernel™ is a Tick-Less Dual-Mode Real Time Operating System (RTOS)
sometimes referred to as a kernel. Q▪Kernel™ is specially created for the modern
processors like the PIC24, dsPIC, PIC32 and fully exploits the power of these
processors.

Q▪Kernel™ supports most of the PIC32 processors and the development
environment. The minimum system requirements are 4kb RAM and 64Kb Flash.
Q▪Kernel™ is tested with the following compilers and IDE:

• MPLAB-X Version 2.0 or higher

• XC32 Compiler Version 1.31 or higher.

The version should also work with

• MPLAB-X Version 1.8 or higher

• XC32 Compiler Version 1 or higher.

• C32 compiler version 2 or higher

• MPLAB8.x or higher

 Supported PIC32 series
Currently all MX devices are supported. The MZ series is not supported but will be
supported in the future.

Q▪Kernel™ User Guide

© 2014 Quasarsoft Ltd. qKernelPic32.docx V6.0-3352 page 6

2. Resources used by Q▪Kernel™
Q▪Kernel™ will use a 32-bit timer to control its timing. The default timer is
TMR4/TMR5 but this can be changed. Software interrupt 0 is used as kernel
interrupt.

 Stack Limiting Features
The PIC32 architecture does not support stack limiting features.

Q▪Kernel™ User Guide

© 2014 Quasarsoft Ltd. qKernelPic32.docx V6.0-3352 page 7

3. Architecture
The PIC32 contains a MIPS core which uses a load/store architecture. Operations
like Add, Subtract, logical operations, etc. are always performed on registers. This
introduces some challenges for Q-Kernel because it requires atomic operations on
data and the load store architecture does not provide that. The architecture
provides load-linked and store-conditional instructions. Load-link returns the
current value of a memory location, while a subsequent store-conditional to the
same memory location will store a new value only if no updates have occurred to
that location since the load-link. Together, this implements a lock-free atomic read-
modify-write operation. All atomic operations are implemented with this
mechanism and interrupts do not have to be disabled.

 Interrupts
The Q▪Kernel™ version for the PIC32 will never1 disables interrupts on its own but
the architecture of the PIC32 will disable interrupts for a very short time during
part of the prologue and epilogue of an interrupt handler. This will introduce some
interrupt jitter but is very limited.

The qISR(vector) function uses zero bytes on the thread stack and it needs about
40 cycles to switch the stack and start execution of the interrupt code. This includes
the interrupt prologue and saving the registers. During this process the PIC32
disables interrupts during 10 cycles.

The qISR_FAST(vector) function uses zero bytes on the thread stack and it needs
about 24 cycles to switch the stack and start execution of the interrupt code. This
includes the interrupt prologue and saving the registers. During this process the
PIC32 disables interrupts during 10 cycles.

The vector in both function is a number. Please refer to the processor manual for
a list of vectors.

 Interrupt stack memory savings

The PIC32 has 32 main registers plus a few support registers. This means that
during an interrupt the system has to save over 100 bytes. This is a minimum
because the interrupt itself will use the stack for local variables and calling other
functions. A value of 150 bytes per interrupt is a more realistic value. Because
interrupts service routines can be interrupted a maximum of 6 times 150 bytes or
900 bytes need to be saved on the stack. Without and interrupt stack an application
with 16 threads needs to reserve 900 bytes per thread which is 10,800 bytes of
memory. With an interrupt stack the system just needs in interrupt stack of 900
bytes. The savings will be almost 10KB.

1 Q-Kernels claim that it has zero interrupt latency is still valid. Zero interrupt latency is based on the fact that the
RTOS does not add latency to the system other than based on the architecture. The PIC32 cannot claim zero interrupt
jitter because of the architecture but limits it to an absolute minimum.

Q▪Kernel™ User Guide

© 2014 Quasarsoft Ltd. qKernelPic32.docx V6.0-3352 page 8

 Context switching
Because of the large amount of registers of the PIC32, context switching requires
more time. The minimum time for context switching is about 80 cycles but a more
practical number is 120 cycles because of some extra overhead.

Systems without the segmented interrupt architecture have to disable interrupt
processing for 120 cycles which introduces a lot of interrupt jitter. Because those
systems disable interrupt in every critical section the system has a lot of jitter.

Q-Kernel does not add any interrupt jitter but the PIC32 architecture disables
interrupts for 10 cycles so the system is not completely jitter free.

Q▪Kernel™ User Guide

© 2014 Quasarsoft Ltd. qKernelPic32.docx V6.0-3352 page 9

4. Installation
Q▪Kernel™ is distributed as a zip file with the name qKernelV3353.zip. The version
contains all versions of Q▪Kernel™ in that build. The last 4 digits in the name is the
build number. Extract the file into a main directory like C:\qKernelFree, but it can
be any drive or name because all references are relative. An example of the
directory structure is specified below.

V3353
 ----- Documentation
 ----- Source
 ----- ------ Pic24_MPLAB.X (PIC24 /dsPIC port)
 ----- ------ ----- Blinky.X (Test program)
 ----- ------ ----- ----- dist
 ----- ------ ----- ----- ------default
 ----- ------ ----- ----- ------------ production
 ----- ------ ----- ----- nbproject
 ----- ------ ----- dist (Distribution for the Q▪Kernel™ libraries)
 ----- ------ ----- ----- default
 ----- ------ ----- ----- ------production (Library Pic24_MPLAB.X.a)
 ----- ------ ----- ----- Generic
 ----- ------ ----- ----- ------production (Library Pic24_MPLAB.X.a)
 ----- ------ ----- ----- GenericDA
 ----- ------ ----- ----- ------production (Library Pic24_MPLAB.X.a)
 ----- ------ ----- ----- GenericEP
 ----- ------ ----- ----- ------production (Library Pic24_MPLAB.X.a)
 ----- ------ ----- ----- ThreadMetric
 ----- ------ ----- ----- ------production (Library Pic24_MPLAB.X.a)
 ----- ------ ----- nbproject
 ----- ------ ----- ThreadMetric.X
 ----- ------ ----- ----- dist
 ----- ------ ----- ----- ------default
 ----- ------ ----- ----- ------------ production
 ----- ------ ----- ----- nbproject
 ----- ------ ----- ----- ------private
 ----- ------ Pic32_MPLAB.X (PIC32 port)
 ----- ------ ----- Blinky.X (Test program)
 ----- ------ ----- ----- dist
 ----- ------ ----- ----- ------default
 ----- ------ ----- ----- ------------ production
 ----- ------ ----- ----- nbproject
 ----- ------ ----- dist (Distribution for the Q▪Kernel™ libraries)
 ----- ------ ----- ----- default
 ----- ------ ----- ----- ------production (Library Pic24_MPLAB.X.a)
 ----- ------ ----- ----- Generic
 ----- ------ ----- ----- ------production (Library Pic24_MPLAB.X.a)
 ----- ------ ----- nbproject

Q▪Kernel™ User Guide

© 2014 Quasarsoft Ltd. qKernelPic32.docx V6.0-3352 page 10

5. Adding Q▪Kernel™ to your application
Q▪Kernel™ can be included as a library in your project. You create your application
and include Q▪Kernel™ as a library project. You go to properties of your project
and click libraries. There you click “Add library Project” and select qKernel.X. In
this case the source will be included and MPLAB will compile the source if required.
You have to specify the configuration, for things like MCU, optimization level, etc.

Q▪Kernel™ consists of many files so only the code that is required will be in flash.
This makes building slow and even if a full build executes sporadic it is advisable
to use the full computer potential. You can improve the build time by selecting
Options from the main menu, then Embedded and select the tab “Project Options”
Select the option “Use parallel make” to speed up the build. It will use all your
cores of your processors.

You application need to include “qKernel.h” in all source files in your project. The
best way to do that is to add the path to this file in the “C include dirs.” of the
compiler. Select your project properties, select xc32-gcc and select option category
“PreProcessing and messages” Then add the path to “C include dirs.”.

You can use all other compile and build options, like memory model, optimization
levels, etc. for your project or Q▪Kernel™ so it is very flexible.

 Using an object library
It is also possible to add Q▪Kernel™ as an object library. There are two options to
do this. Create a specific configuration for your project, including the MCU to use
and build Q▪Kernel™. Then include that object library in your project.

It is also possible to include the standard Q-Kernel distribution. This library is
compiled with -s as optimization level, kernel timer is TMR4/TMR5 and the full
parameter checking.

	1. Introduction to PIC32
	1.1. Supported PIC32 series

	2. Resources used by Q▪Kernel™
	2.1. Stack Limiting Features

	3. Architecture
	3.1. Interrupts
	3.1.1 Interrupt stack memory savings

	3.2. Context switching

	4. Installation
	5. Adding Q▪Kernel™ to your application
	5.1. Using an object library

