Quasar:

Q=Kernel

Reference Guide
Version 6.0-3353

Q-Kernel is a product of Quasarsoft Ltd

Q=Kernel Reference Guide

License
Q-Kernel-Free Copyright (¢) 2013 QuasarSoft Ltd.

Q-Kernel-Free is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License (version 3) as published by the Free
Software Foundation and modified by the QuasarSoft Ltd. exception.

The QuasarSoft Ltd. EXCEPTION

You may not exercise any of the rights granted to You in
any manner that is primarily intended for or directed
toward commercial advantage or private monetary
compensation. The exchange of the Program for other
copyrighted works by means of digital file-sharing or
otherwise shall not be considered to be intended for or
directed toward commercial advantage or private monetary
compensation, provided there is no payment of any

Q-Kernel-Free is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the full license text at the following link
<http://www.quasarsoft.com/license.htm|>

For the purpose of applying the license to this document, | consider "source code"
to refer to this document source (.docx) and "object code" to refer to the
generated file (.pdf).

Quasar:

Quasarsoft Ltd

312 5t Ave Bay 14

Suite 354

Cochrane Alberta T4C 2E3
Canada

Tel. +1 (403) 450 3482
WwWww.guasarsoft.com

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 2

http://www.quasarsoft.com/license.html
http://www.quasarsoft.com/

Q=Kernel Reference Guide

About this document

This document describes the Q-Kernel (The new generation RTOS) Application
Programming Interface (API) Most Q-Kernel documents, specially the user guides,
are MCU specific but this manual is for all version of Q-Kernel. All versions have
the same API.

Assumptions
This document assumes that you already have a solid knowledge of the following:

e The software tools used for building your application, mainly C30 and the
Linker

e The C Programming language

e The Q-Kernel user guide for your processor.

If you feel that your knowledge of C is not sufficient, we recommend The C
Programming Language by Kernighan and Richie (ISBN 0-13-1103628), which
describes the standard in C-programming and, in newer editions, also covers the
ANSI C standard.

How to use this manual

The intention of this manual is to give you a reference for all Q-Kernel API
functions. For a more comprehensive description how to use Q-Kernel please read
the Q-Kernel User guide.

O-Kernel

"W The new generation RTOS

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 3

Q=Kernel Reference Guide

Color ribbon

A color ribbon underneath every function description indicates when and from
where the function can be called.

Before

Start Thread | Critical Section | Fiber No preemption

The example above describes that the function always be called except from an
ISR. The function does not preempt.

Before Start
This indicator is be one of the following colors:

¢ Red indicates that it is not allowed to call the function before the start of
the kernel with the function gKrnStart().

¢ Green indicates that it is allowed to call the function before the start of the
kernel with the function gKrnStart(). It is possible that the function real
purpose is delayed until the start of the kernel.

Thread
This indicator is one of the following colors:
e Red indicates that it is not allowed to call the function from a thread.

e Orange indicates that the function can be called from a Fiber but that the
working depends on the input variables of the function.

e Green indicates that it is allowed to call the function from a thread.

Critical Section
This indicator is one of the following colors:

¢ Red indicates that it is not allowed to call the function when in a critical
section.

e Orange indicates that the function can be called critical section but that the
working depends on the input variables of the function. In most cases this is
related to the timeout variable.

e Green indicates that it is allowed to call the function from a critical section.

Fiber
This indicator is one of the following colors:
e Red indicates that it is not allowed to call the function from a fiber.

e Orange indicates that the function can be called from a fiber but that the
working depends on the input variables of the function. In most cases this is
related to the timeout variable.

e Green indicates that it is allowed to call the function from a fiber.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 4

Q=Kernel Reference Guide

ISR
This indicator is one of the following colors:
e Red indicates that it is not allowed to call the function from an ISR.

e Green indicates that it is allowed to call the function from an ISR.

Preemption
This indicator is always yellow and the text can be the following:

e No Preemption means that the function never preempts if called from a
thread.

e Always Preemption means that the function always preempts if called from
a thread.

e Possible Preemption means that the function could preempts if called from
a thread.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 5

Q=Kernel Reference Guide

© ® N o 0 s~ NR

AR OWOW W W W WWWW®NNNDNDNNRNNNNDNIERERRRRRRRp
PO 0O ® N O 0 K ®DNPRF OO N OO RMODNDREOOLONOOONMOOBDNPREO

(o]2 1 (1 | TP 12
Lo =73 (O [AN (0] o 01 o PP 13
(o] 2111V =T 0 0 (@] [N (0] o ¢ 1 (o3 PP 14
Lo =7y 0 (=T 0 g IS 1= 7N (0] o o PP 15
(o] 21111V (=T 0 0 e] N (o 1 o o PP 16
Lo =7 01T 0] PP 17
(0]2 1 ST A PP PPP 18
Lo =7 1= 7Y 0] o o PP 19
(0]2 1 I o | PP 20
Lo =7 e A o] o o] [PP 21
(0]2 1) 5 A PP 22
o =77 (O PP 23
(0] 23 Y21 B I=To7 AN (o] o o | o PP 24
Lo =372 o g Te7 2N (0] o 1o PP 25
[0 123721170 LY PN 26
(0] Y2 5T = PP 27
(o [0 ol 0= (o1 1 | F= 1 = PP 28
[0 1O o = PP 29
[0 O = o T PN 30
Lo [o 1 | PP PP 31
(o | DAY= 11 o o [P PPP 32
Lo YU 1 52 I PPN 33
(o | DAV 0 1 12 G PP 34
(o |31V 8 L Bt PP 35
Lo YO L7 b o PPN 36
(o] B g a7 Yo o | 2= 1Y PP 37
Lo] g gV o [0T U] = PP 38
(o] B g gV Yo o |1V 15 [WL (=T P TTTP 39
Lo] g gV Yo [0 1T =T olo] T PP 40
(o] B g gV Yo [0 NV = PP 41
ODEMDAYOTWEEK e e ettt ettt 42
(o] B g a1 foT g o] =ToTo | 5 N LN PP 43
ODTMIETOMY MDD HMS .. ettt ettt et ettt et e ettt et ettt e et n et e eaneas 44
(o] B g gl o] =Yoo | 5 i o o HUUR PP 45
Lo | Y2 (04 [T T PP 46
(o | SV (O (o 1= = TP 47
L0 | Y4 O == PP 48
[0 1 Y2 (@ 0T o PN 49
L0 |V (O 0= g |1 PP 50
[0] =AY 2 (@ oY= o I 0 PN 51
Lo | =AY 5] o [o -1 PP PP 53

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 6

Q=Kernel Reference Guide

42.
43.
a4.
45,
46.
a7.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.

Lo |V 0T = T PP 54
Lo SV A) 4N PPN 56
Lo |V 0TV = T o I L PP 58
Lo =L 0] 13 PP 60
(o | o1 O ¢ =T= 1 (= PP 61
Lo | o] o =1 To [U T=TE = PP 62
(o | o1t =l To [U= 7= PP 63
Lo | o o =1 To [U T=TE = PP 64
gFbrSpawnX (X = 1, 2, 3 0r 4) (Priority fiDers) ... 65
Lo | o] 5] oo \TLY] 12 (o o PP 66
(o | o] S = 1 (03] 1= PP 67
Lo | Dt 2 | (o o PP 68
Lo | 02| Lo o 4 | PP 69
Lo | DO == (= PP PP 70
Lo | D (1 [0 1= = PP 71
Lo | DL == PP 72
(o | [T 7Y | (o T o TP 73
Lo | =T= S = PP 74
[0 1 = o PN 75
Lo | a1 1013 41 o3 | PP 76
(o | g 01 1T 0T PP 77
Lo | a1 1013 41 o3 | PP 78
Lo | 01 1 1 TP 79
Lo | g 01 1 11 1 =0 PP 81
Lo | 1AV o | = PP 83
Lo | N 81NN L1 53T o o PP 84
Lo | 1 =T PP 85
[0 1 157 = PN 86
Lo | 1S 7= i PP 87
[0 g 157 = (] o PN 88
GKINSWItCNNOTITICAtIONOTT ... e ettt ettt ettt e e e eeaeas 89
(o] g g IT1Y/1 (o] a1\ (o] o 1 To7= 1 1 o] 1@ o HAr PP 90
Lo | LI = 1o (] T | o | = PP 91
(o | U gl I = T XL o | LU T o PP 92
Lo | LI = 1o] T 1S 1= o L PP 93
(o | g g 1 ST=T o @ 3 PP 94
L0 | 01U T o o PP 95
(o | g 0 V2 =T 5] (o] o PP 96
Lo 1Y =T 0 072 1 o T PP 97
(o |17 =T 0 0 VA Lo Tox 1 | PP 98
Lo 1Y =T o g VY o Tod =i o T o o | N PP 99

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 7

Q=Kernel Reference Guide

83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.

(o]\Y/=T 0 VaX I Lo To = o] 4 o1 2o o] 1 | chrur PPN 100
(o AV =T o g VY o Tol ml o] 0 a1 =0 o | = T PP 101
[0 1YL= T =T PP 102
(o 1Y =T TS =T =] PPN 103
(o 117 1=T 0 0 =0T 1 PPN 104
(o |1V =T o a1 =T 0T o] V2N [0 F PP 105
(o |17 1=T 0 g1 =0 Yo NN 1= g S PPN 106
(o 1Y =T o a1 =T 0T 0] 1S 4 = PP 107
(o |17 1=T 0 1R TST= 1 | [T o2 PPN 108
Lo 1Y T AN 1 0T PP 109
(o |17 KT 0 PN | (ool = 1= PPN 110
[0 117 o o o Y PPN 111
(o |1 S o B = = 1] v = PPN 112
Lo 1Y T T T2 | oo P 113
(o |1 S o o T OF == L (= PPN 114
[0 1Y S0 | =T PPN 115
(o |1 S0 Y = DS - = T PPN 116
OMSGPUDI SR . . ettt 117
[0 |17 KT o | 2= 1= To PPN 118
Lo 1Y Yo =T o T Y PP 119
OMSORECEIVENDttt ettt ettt et ettt ettt e n ettt et e e ettt eneaneaaeaaeeaneanaanenn 120
Lo 1Y Yo |2 d=T o T Y I PP 121
[0 117 K=o IS 1= T PPN 123
(o 1LY KT 0 IS =T 0T NN PPN 125
Lo 1Y Yo [ST=T T I PP 126
(o 1Y ST 0 AT 1 PPN 128
Lo 1Y (4 [0 1= PP 129
[0 1L O == PP 130
Lo 1Y T o Lo PP 132
[0 |17 o e Yo (AN = PN 133
Lo 1Y T o Lo 7 I PP 134
[0 11 @ 0T o PP 136
[0 110 o=] PPN 137
[0 111 @ o= o 1 L PP 138
[0 1Y 1 =T PPN 140
(o 111 08 L (o o G PPN 141
(o | =T 0] =] Lo o3 1T 4 PP 142
(o | oL@ o 1= PPN 143
Lo T 013 =T L PP 144
(o | o o] =1 o) X =S PPN 147
Lo [T 0] == = (o o2 PP 148

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 8

Q=Kernel Reference Guide

124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.

(o | o1 = PPN 149
Lo [T 0T ET= 1 =Y = T PP 150
(o | T o] €= 1=] PPN 151
(o | ol o TT= YA o o | = T3 PP 152
(o | o 011 = D141 Lo o] X PN 153
Lo | =101 01T o PP 154
(o | =11 @7 0 T=T o111 2 PPN 156
(o | =101 o 1= o 1 1 PP 157
(o | o= 1 S PPN 159
Lo [T 0 UL 27 1 = L] PP 160
(o | T oL S BT AV Ao | = T PPN 161
Lo T UL = T P 162
(o | 2 o1 2= T= To PPN 163
(o [T 0 Ry=T= To | = L] PP 164
(o | T o)A 1 (PPN 165
Lo [T o N AV g (=] =] PP 166
(o | U] o104 [0 1] PPN 167
Lo o8O == | (= PP 168
(o | U] o1 o= o PPN 169
(o | =8 o1 @7 o =T |11 PP 170
(o | U] o1 o 7= o i 1 1 PPN 171
(o | =81 o318] o 1Tt 1 o 1=l | o PP 173
(o | U] oIS U] o FTo] g oT=T I o JR PPN 174
(o] U] oIS U] o FTo] g o<1 1 I PPN 175
Lo VY =T T Lo | PP 176
(o | Ty =T 11] 1=T=T o PPN 177
Lo VY =V =T 1 o |1 PP 178
(o | Ty g e E =T 01 1] == o L PPN 179
[0 1@ 18104 [1 = PP 180
[0 @ LT =T L PP 181
[0 1 18T 0T o 1 PPN 182
(o 1@ T T=T@ 0T 1NN = PP 184
(o 1 L8100 0= o N I PPN 185
[0 1= T T PP 187
(o]R3z T a1 NN | 1 ST =T o PP 188
(o] (o AN =T g o 1 PPN 189
(o |24 (ol ©T=] - i 1o I PP 190
(o | R (o] 1= (0] o) 1T o 1= PPN 191
Lo |2 (o3 D= i o 0 PP 192
(0 11T o oV A oTo |61 = PPN 193
(o 1ST=T 0 T AX oo 81 =Y = L] PP 194

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 9

Q=Kernel Reference Guide

165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.

(0 11T o gV oto BT =] N1 = PPN 195
(o 1ST=T 0 7AYot o [1 = I PP 196
[0 111 0 0104 [0 7= 3PN 198
[0 1ST=] 0 g O =T = PPN 199
[11T 0.0 1 o 1T o 1 PP 201
[0 1S =T 0 T o 7=T 1IN = PPN 203
[0 11T 0 01O o 1T o 1 I PP 204
(o 1S7=T 0 0T =T 1 £ PP 206
(0 11T 0 g1 R L=T == L] PPN 207
IS EMIREIEASEFASTttt n e 208
Lo 1 I O Lo] = PPN 209
Lo [I T O =T L PP 210
qThrCreateEds (Only 16bDit PIC'S With EDS)uuiiiii ittt ettt ettt et et e e e e e aneaneanens 212
(o I 1@ =T 1 (SIS U1 o 1=T g To [T o PP 214
qThrCreateSuspendedEds (PIC’S WIth EDS) ...ttt ettt ettt e e e eaaeanens 216
Lo I T O T = | PP 218
(ol I A4 (1 [T T PPN 219
Lo I I T SV 55 o T | PP 220
Lo 1L I A2 AT = T PPN 221
OTRIEVEWAITNDBot cete ettt ettt ettt ettt et e ettt ettt e et et et et et ea e et ea e et en e et eneeenenns 223
Lol I A2 AT 2= T o PPN 225
Lo 1 I 1O o 7= o T PP 227
(o 1L I (@] o 7= o 11N 2 PPN 229
(ol I 0 (@] o 1= o 1 1 J PPN 230
Lo I T R L= 0 0 1= PP 232
(ol I 22 U T =3 2 PPN 233
Lo I I T EST= t o) 1Y PP 234
(ol I] £57 ST=T o 1 PPN 235
Lo I T 2= o] PP 237
(o LI] £5] =1 O3 o [PPN 238
Lo I T STU] o =] o o [PP 239
(o I £ TU] o1=T 0T A PPN 240
Lo 1 I T 1= To [= PP 241
(o 1L I g 1= 1o ST A PPN 242
Lo 1 I T I =Tt T PP 243
Lo 1 I] =1 o PPN 244
Lo 1 I T 1@ od 1= P 245
Lo 1L I L0 0117 ST o PPN 246
Lo 1 I T 1 1ST= o PP 247
Lo 1 I 011 (o 1= = PPN 248
Lo LI 01 3 ==L PPN 249

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 10

Q=Kernel Reference Guide

2 LG T o 1 I 1 01] o 1= o T PPN 251
b0 A o 1 I 0 01 oY1 g\ PP 252
P20 T o I 1 01 @] o 1= o N I PPN 253
B0 1 T o 1 I 0 01 £ = T o PP 255
2 O TR o 1 I ¢ 0] 53 (o o P PPN 256
b T T o 1V o 1 | PP 257
P2 2 o | VAV] o [1= T o7 AN e o o1 [PP 258
b2 G T o VAV o I g To 2] o o T3 PP 259
b2 o | VAV o 1 o Y PP 260
b ST o Vo 1S PP 261
20 G 1 g P 262
YT | =T] £ 262
1o LT =T o o] = PPN 264
LT =T =T g o PP 265
Y L2 EST= T T o = PP 266
LU =D o = 267
g T o TSI = 0] =T PP 268
(O T80T o T = 269
ST=T agF=T el aTo] g =g o] =P 270
I LT 16 I = g T = P 271
LI L= =g 0] = PPN 273
L= | I T g TSI O [o S = g o] PP 275
PUBIISN/SUDSCIIDE EFTOIS. ...ttt ettt ettt e e e e e e e 276
Y =T 0] oV = 0 = PP 277

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 11

Q=Kernel

Reference Guide

1. gBitCir

void gBitClr(
unsigned* Ptr
unsigned Bit)

// Address
// The bit to clear

Description

No preemption

This function clears the bit in the unsigned integer pointed to by Ptr. This function
is an inline function doing the following operation:

*Ptr &= ~(1<<(Bit));

The function is NOT atomic. Don’t use gBitClrAtomic() if atomicy is not required.

Parameters and return value

Parameter

Description

unsigned> Ptr

Address

unsigned Bit

Bit Number (0->15 or 0->31)

Error conditions

None

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353

page 12

Q=Kernel Reference Guide

2. gBitCirAtomic

void gBitClrAtomic(
unsigned* Ptr, // Address
unsigned Bit); // The bit to clear

No preemption

Description

This function clears the bit in the unsigned integer pointed to by Ptr. This function
is a specific operation because it is atomic.

Use the function gBitCIr() if atomicy is not required.

Parameters and return value

Parameter Description
unsigned* Ptr Address
unsigned Bit Bit Number (0->15 or 0->31)

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 13

Q=Kernel Reference Guide

3. qgBitMemCIrAtomic

void gBitMemClrAtomic(
unsigned BitNbr); // The bit number to clear

No preemption

Description

This function clears a bit in special memory. This function is a specific operation
because it is atomic and it can only operate on special memory. See the user guide
for more information.

Parameters and return value

Parameter Description

unsigned BitNbr Bit Number

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 14

Q=Kernel Reference Guide

4. gBitMemSetAtomic

void gBitMemSetAtomic(
unsigned BitNbr); // The bit number to set

No preemption

Description

This function sets a bit in special memory. This function is a specific operation
because it is atomic and it can only operate on special memory. See the user guide
for more information.

Parameters and return value

Parameter Description

unsigned BitNbr Bit Number

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 15

Q=Kernel Reference Guide

5. qgBitMemTglAtomic

void gBitMemTglAtomic(
unsigned BitNbr); // The bit number to toggle

No preemption

Description

This function toggles a bit in special memory. This function is a specific operation
because it is atomic and it can only operate on special memory. See the user guide
for more information.

Parameters and return value

Parameter Description

unsigned Bit Bit Number

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 16

Q=Kernel Reference Guide

6. qgBitMemTst

bool gBitMemTst(
unsigned BitNbr); // The bit number to test

No preemption

Description

This function test a bit in special memory. This function is a specific operation
because it is atomic and it can only operate on special memory. See the user guide
for more information.

Parameters and return value

Parameter Description
bool return Returns true if bit was set and false if bit was clear
unsigned BitNbr Bit Number

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 17

Q=Kernel

Reference Guide

7. QqBitSet

void gBitSet(
unsigned* Ptr,
unsigned Bit);

// Address

// The bit to set

Description

No preemption

This function set the bit in the unsigned integer pointed to by Ptr. This function is
an inline function doing the following operation:

*Ptr |= (1<<(Bit)

)

The function is NOT atomic. Don’t use gBitSetAtomic() if atomicy is not required.

Parameters and return value

Parameter

Description

unsigned> Ptr

Address

unsigned Bit

Bit Number (0->15 or 0->31)

Error conditions

None

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353

page 18

Q=Kernel Reference Guide

8. (gBitSetAtomic

void gBitSetAtomic(
unsigned* Ptr, // Address
unsigned Bit); // The bit to set

No preemption

Description

This function set the bit in the unsigned integer pointed to by Ptr. This function is a
specific operation because it is atomic.

Use the function gBitSet() if atomicy is not required.

Parameters and return value

Parameter Description
unsigned* Ptr Address
unsigned Bit Bit Number (0->15 or 0->31)

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 19

Q=Kernel Reference Guide

9. (@BitTgl

void gBitTgl(
unsigned* Ptr, // Address
unsigned Bit); // The bit to toggle

No preemption

Description

This function toggles the bit in the unsigned integer pointed to by Ptr. This function
is an inline function doing the following operation:

*Ptr M= (1<<(Bit));

The function is NOT atomic. Don’t use gBitTglAtomic() if atomicy is not required.

Parameters and return value

Parameter Description
unsigned* Ptr Address
unsigned Bit Bit Number (0->15 or 0->31)

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 20

Q=Kernel Reference Guide

10. gBitTglAtomic

void gBitTglAtomic(
unsigned* Ptr, // Address
unsigned Bit); // The bit to toggle

Description

This function toggles the bit in the unsigned integer pointed to by Ptr. This function
is a specific operation because it is atomic.

Use the function gBitTgl() if atomicy is not required.

Parameters and return value

Parameter Description
unsigned* Ptr Address
unsigned Bit Bit Number (0->15 or 0->31)

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 21

Q=Kernel Reference Guide

11. gBitTst

bool gBitTst(
unsigned* Ptr, // Address
unsigned Bit); // The bit to togle

No preemption

Description

This function test the bit in the unsigned integer pointed to by Ptr. This function is
an inline function doing the following operation:

IT (*Ptr & (1<<(Bit)) return true else return false;

Parameters and return value

Parameter Description
return bool Return true if bit set and false if bit is clear
unsigned* Ptr Address
unsigned Bit Bit Number (0->15 or 0->31)

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 22

Q=Kernel Reference Guide

12. gBytClr

void gBytClr(
unsigned* From, // From address
unsigned Len); // Length In number of bytes

No preemption

Description

This function clears (filled with all O bits) an array of unsigned bytes. These
functions are optimized for the type of processor and operate much faster then the
C functions.

Parameters and return value

Parameter Description
uint8_t* From From address
unsigned Len The length in bytes

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 23

Q=Kernel Reference Guide

13. gBytDecAtomic

void qgBytDecAtomic(
uint8_t* p) // Address for the operation

No preemption

Description

This function decrement the unsigned byte location pointed by p atomiccaly. An
atomic operation is an operation that will always be executed without any other

thread, fiber or interrupt being able to read or change the value during the
operation.

Parameters and return value

Parameter Description

uint8_t* p Pointer to the location of the operation

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 24

Q=Kernel Reference Guide

14. gBytIncAtomic

void qgBytIncAtomic(
uint8_t* p) // Address for the operation

No preemption

Description

This function increment the integer location pointed by p atomiccaly. An atomic
operation is an operation that will always be executed without any other thread,
fiber or interrupt being able to read or change the value during the operation.

Parameters and return value

Parameter Description

uint8_t* p Pointer to the location of the operation

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 25

Q=Kernel Reference Guide

15. gBytMov

void gBytMov(
uint8 _t* From, // From address
uint8_t* To, // To address
unsigned Len); // Length in number of bytes

No preemption

Description

This function moves unsigned bytes from a From location to a To location. Both
locations can not overlap. This is not tested and the responsibility of the developer.

These functions are optimized for the type of processor and operate much faster
then the C functions.

Parameters and return value

Parameter Description
uint8_t* From From address
uint8_t* To To address
unsigned Len The length in bytes

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 26

Q=Kernel Reference Guide

16. qgBytSet
void qgBytSet(
uint8 _t* From, // From address
unsigned Len); // Length In number of bytes

No preemption

Description

This function set (filled with all 1 bits) an array of unsigned bytes. These functions
are optimized for the type of processor and operate much faster then the C
functions.

Parameters and return value

Parameter Description
uint8_t* From From address
unsigned Len The length in bytes

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 27

Q=Kernel Reference Guide

17. gCrcCalculate

uint32_t gCrcCalc(
uint32_t Crc, // The CRC to start with
uint8_t* Buf, // The buffer to get the CRC from
unsigned Size); // The size of the buffer

No preemption

Description

This function calculates the CRC of a number of characters. Because there is an
option for a start value this function allows you to add different pieces together to
create a combined CRC.

The polynomial is OXx1EDC6F41. This CRC is called in the Castagnoli or CRC32C
test. See http://en.wikipedia.org/wiki/Cyclic_redundancy_check

Parameters and return value

Parameter Description

Returns uint32_t The calculated CRC

uint32_t CRC The start value of Oxffffffff or previous calculated
values.

uint8_t* Buf The buffer.

unsigned Size The size of the buffer

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 28

http://en.wikipedia.org/wiki/Cyclic_redundancy_check

Q=Kernel Reference Guide

18. gCrcGet

uint32_t gCrcGet(
uint8 t* Buf, // The buffer to get the CRC from
unsigned Size); // The size of the buffer

No preemption

Description

This function calculates the CRC of a number of characters. The polynomial is
Ox1EDC6F41. This CRC is called in the Castagnoli or CRC32C test.
See http://en.wikipedia.org/wiki/Cyclic_redundancy_check

Parameters and return value

Parameter Description
Returns uint32_t The calculated CRC
uint8_t* Buf The buffer.

unsigned Size The size of the buffer

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 29

http://en.wikipedia.org/wiki/Cyclic_redundancy_check

Q=Kernel Reference Guide

19. qCrtEnter

void qCrtEnter(); // Enter a critical section

No preemption

Description

This function enters a critical section or if in a critical section it increases the count.
Critical sections don’t have a practical level limit. Every qCrtEnter() must be
followed by an qCrtExit().

Parameters and return value

None

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 30

Q=Kernel Reference Guide

20. qCrtexit

void qCrteExit(); // EXit a critical section

Description

This function exits a critical section. Every qCrtEnter() must be followed by an
qCrtexit().

Parameters and return value

None

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 31

Q=Kernel Reference Guide

21. qgDivScaling

uintl6_t gDivScaling(
uintl6é_t vi,
uintlé_t v2,
uintleé_t v3d);

No preemption

Description

This function returns (v1*v2)/v3. It can scale a variable based on 2 other
variables. This is often the case when a variable needs to be changed a bit to
accomplish trimming for small in-accuracies. If for example a reference voltage is
defines as 2.500V but after calibration the refrenece voltage seems to be 2.510V a
measured value need to be scaled. So if we measure 1.250V the real value is
1.255V. We need to calculate Voltage=(MeasureVoltage*2510)/2500. This is exacly
what this function does. The process can be optimized in assembler.

Parameters and return value

Parameter Description
Returns uintl6_t The result of the scaling
uintle_tvl Measured value
uintlé_t v2 Calibrated value
unitl6é_t v3 Reference value

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 32

Q=Kernel

Reference Guide

22. gDivU3216

uint32_t gDivU3216(
uint32_t Dividend,
uintl6_t Divisor);

Description

No preemption

This function divides the dividend by the divisor and returns the result. The

remainder is stored at the address of the Remainder.

This function is provided to optimize divide operations with smaller values.

Parameters and return value

Parameter

Description

Returns uint32_t

The result of the divider

uint32_t Dividend

Dividend

uint16_t Divisor

Divisor

Error conditions

None

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353

page 33

Q=Kernel Reference Guide

23. gDivU3216R

uint32_t gDivU3216R(
uint32_t Dividend,
uintlé_t Divisor,
uintl6_t* Remainder);

No preemption

Description

This function divides the dividend by the divisor and returns the result. The
remainder is stored at the address of the Remainder.

This function is provided to optimize divide operations with smaller values.

Parameters and return value

Parameter Description
Returns uint32_t The result of the divider
uint32_t Dividend Dividend

uintl6_t Divisor Divisor

unitl6_t* Remainder Remainder

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 34

Q=Kernel

Reference Guide

24. gDivU6416

uinté4_t gDivU6416 (
uinté4_t Dividend,
uintl6_t Divisor);

Description

No preemption

This function divides the dividend by the divisor and returns the result. The

remainder is stored at the address of the Remainder.

This function is provided to optimize divide operations with smaller values.

Parameters and return value

Parameter

Description

Returns uint64_t

The result of the divider

uint64_t Dividend

Dividend

uintl6_t Divisor

Divisor

Error conditions

None

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353

page 35

Q=Kernel Reference Guide

25. gDivU6416R

uint32_t gDivU6416 (
uinté4_t Dividend,
uintlé_t Divisor,
uintl6_t* Remainder);

No preemption

Description

This function divides the dividend by the divisor and returns the result. The
remainder is stored at the address of the Remainder.

This function is provided to optimize divide operations with smaller values.

Parameters and return value

Parameter Description
Returns uint64_t The result of the divider
uint64_t Dividend Dividend

uintl6_t Divisor Divisor

unitl6_t* Remainder Remainder

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 36

Q=Kernel Reference Guide

26. gbtmAddDays

uint32_t gDtmAddDays(
uint32_t DatTim, // The date-time to add to
int Day); // The number of days to add or
// subtract if negative

No preemption

Description

This function adds a number of days to the date-time and returns the new
calculated date-time. The function does not test for over- or underflow.

Parameters and return value

Parameter Description

Returns uint32_t The calculated new date
uint32_t DatTim The date-time in internal format.
int Day The number of days to add.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 37

Q=Kernel Reference Guide

27. qbtmAddHours

uint32_t gDtmAddHours(
uint32_t DatTim, // The date-time to add to
int Hour); // The number of hours to add or
// subtract if negative

No preemption

Description

This function adds a number of hours to the date-time and returns the new
calculated date-time. The function does not test for over- or underflow.

Parameters and return value

Parameter Description

Returns uint32_t The calculated new date
uint32_t DatTim The date-time in internal format.
int Hour The number of hours to add.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 38

Q=Kernel Reference Guide

28. gDtmAddMinutes

uint32_t gDtmAddMinutes(
uint32_t DatTim, // The date-time to add to
int Minute); // The number of minutes to add or
// subtract if negative

No preemption

Description

This function adds a number of minutes to the date-time and returns the new
calculated date-time. The function does not test for over- or underflow.

Parameters and return value

Parameter Description

Returns uint32_t The calculated new date
uint32_t DatTim The date-time in internal format.
int Minute The number of minutes to add.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 39

Q=Kernel Reference Guide

29. gDtmAddSeconds

uint32_t gDtmAddSeconds(
uint32_t DatTim, // The date-time to add to
int Second); // The number of seconds to add or
// subtract if negative

No preemption

Description

This function adds a number of seconds to the date-time and returns the new
calculated date-time. The function does not test for over- or underflow.

Parameters and return value

Parameter Description

Returns uint32_t The calculated new date
uint32_t DatTim The date-time in internal format.
int Second The number of seconds to add.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 40

Q=Kernel Reference Guide

30. gbtmAddYears

uint32_t gDtmAddYears(
uint32_t DatTim, // The date-time to add to
int Year); // The number of Years to add or
// subtract if negative

No preemption

Description

This function adds a number of years to the date-time and returns the new
calculated date-time. The function does not test for over- or underflow.

Parameters and return value

Parameter Description

Returns uint32_t The calculated new date
uint32_t DatTim The date-time in internal format.
int Year The number of years to add.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 41

Q=Kernel Reference Guide

31. gbDtmDayOfWeek

unsigned gDtmDayOfWeek(
uint32_t DatTim) // The date-time to find day of

No preemption

Description

This function calculates the day of the week for a given date.

Parameters and return value

Parameter Description

Returns unsigned The function returns day of the week for a given
date. Monday=1, Tuesday=2 Sunday=7

uint32_t DatTim The date-time in internal format.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 42

Q=Kernel Reference Guide

32. gDtmFromBcdDT

uint32_t gDtmFromBcdDT(
pDATETIME DateTime) // The date-time to convert

No preemption

Description

This function converts a BCD date-time to the internal data-time format. The
function also checks if the date-time in the structure is valid. If not it will return
zero.

Parameters and return value

Parameter Description

Returns uint32_t The function returns the date-time in the internal
format. If the date-time is incorrect the function
returns zero.

pDATETIME DateTime A pointer to the date-time structure.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 43

Q=Kernel Reference Guide

33. gDtmFromYMDHMS

uint32_t gDtmFromYMDHMS(
uint8_t Year,
uint8_t Month,
uint8_t Day,
uint8_t Hour,
uint8_t Minute,
uint8_t Second);

No preemption

Description

This function returns an internal DateTime value based on the input.

Parameters and return value

Parameter Description

Returns uint32_t The function returns the date-time in the internal
format. If the date-time is incorrect the function
returns zero.

uint8_t Year The number of years.

uint8_t Month The month of the year from 1 to 12.
uint8_t Day The day of the month.

uint8_t Hour The hour of the day in 24 hour clock.
uint8_t Minute The number of minutes.

uint8_t Second The number of seconds.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 44

Q=Kernel Reference Guide

34. gbtmToBcdDtm

void gbtmToBcdDtm(
uint32_t DatTim
pBCD_DTM bcdDatTim);

Description

This function converts date-time in internal format to a date structure.

Parameters and return value

Parameter Description
uint32_t DatTim The date-time in internal format.
pBCD_DTM bcdDatTim Pointer to the bcd datetime

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 45

Q=Kernel Reference Guide

35. gEvtClear

unsigned gEvtClear(
PEVT pEVt, // The event set to clear
unsigned EventFlags); // The flags to set

No preemption

Description

Clears one or more event flags in the event set and returns the events flags before
the clear.

This is also the mechanism to get the event flags without changing the event flags.
See the example below:

unsigned flags; // variable to return the flags

PEVT p; // Set by create or open

flags = gevtClear(p,0) 7/ Null does not clear anything.
// 1t now just returns the event
// fTlags

Parameters and return value

Parameter Description

Returns unsigned Returns the event flags before the clear operation.

PEVT pEvt A pointer to the event set object. Must be returned
from gEvtCreate() or qEvtOpen() with the correct
name.

unsigned EventFlags The event flags to clear. A value of zero does not

clear any of the flags.

Error conditions

Error Description
gERR_EVT_ISR The function is called from an ISR.
qERR_EVT _ID The object is not an event set object, has not been

created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 46

Q=Kernel

Reference Guide

36. qgEvtClose

void gEvtClose(
PEVT pEvVt);

// The event set to close

Description

No preemption

Closes an event set and returns the resources back to the resource pool. It is the
developer responsibility to make sure that the event set is not used by other
threads. The function will test if any thread is waiting on the event set but it does
not detect if other threads are using this event set. The system will invalidate the
object so other function can’t use the object accidentally.

Parameters and return value

Parameter

Description

PEVT pEvt

A pointer to the object. Must be returned from the
gEvtCreate() or qEvtOpen() function with the
correct name.

Error conditions

Error

Description

gERR_EVT_ISR

The function is called from an ISR.

gERR_EVT_ID

The object is not an event object, has not been
created or points to no object at all.

gERR_EVT_IN_USE

One or more threads are waiting on the event. The
system can’t detect if other thread are using this
event. The system will clear the object and use of
the same address most likely results in
qERR_EVT_ID

The developer is responsible for checking if the Event object is
not used anymore.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353 page 47

Q=Kernel Reference Guide

37. qgEvtCreate

pPEVT gEvtCreate(
char* pName); // The Name of the EventSet

Possible preemption

Description

Before an event set can be used, it has to be created by calling this function. On
creation, all event flags are cleared. If there is an open request for the event with
this name that thread will be readied, this creates a possible preemption. Multiple
threads can wait for the object to be created and all threads will be readied.

The function needs memory for its operation, that’'s being freed when gEvtClose()
end the use of the event. The function tries to allocate memory from the variable
memory pool or from the heap. If this fails the system throws the error to indicate
failure. To prevent this error it is a good practice to create enough objects during
initialization.

Parameters and return value

Parameter Description

Returns pEVT The function returns a pointer to the event set
object.

char *pName The name of the event set. The name must be

unique within other event set objects or
gNO_NAME which is a null pointer. gevtOpen() can
be used to locate the object if the name is not a
null pointer.

Error conditions

Error Description

gERR_EVT_ISR The function is called from an ISR

gERR_EVT_NAME_IN_USE The name is already in use for another object

gERR_EVT_MEMORY There is no memory available to handle the
request.

The developer must give every object a unique name.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 48

Q=Kernel

Reference Guide

38. qgEvtOpen

PEVT gEvtOpen(
char *pName);

// Retuns NULL when timed-out
// The Name of the EventSet

Description

Possible preemption

This function returns a pointer to an existing event set object. If the object is
created before this function is executed the function returns immediately. If the
object with that name does not exists the threads is suspended.

Parameters and return value

Parameter

Description

Returns pEVT

The function returns a pointer to the event object.

char *pName

The name of the object to open. Objects without a
name, dqNO_NAME or a NULL pointer, cannot be
opened.

Error conditions

Error

Description

gERR_EVT_ISR

The function is called from an ISR.

gERR_EVT_NO_START

The function is called before Q-Kernel is started.

gERR_EVT_FBR

The function is called from a fiber which is not
supported because fibers don't support blocking.

gERR_EVT_NO_NAME

Events without a name can’t be opened.

gERR_EVT_CRITICAL

This function cannot be called from within a critical
section

gERR_EVT_MEMORY

There is no memory available to handle the open
request.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353 page 49

Q=Kernel Reference Guide

39. gEvtOpenNB

PEVT gEvtOpenNB(//
char *pName); // The Name of the EventSet

No preemption

Description

This function returns a pointer to an existing event set object.

Parameters and return value

Parameter Description
Returns pEVT The function returns a pointer to the event object.
The function returns NULL if the object does not
exist.
char *pName The name of the object to open. Objects without a
name, dNO_NAME or a NULL pointer, cannot be
opened.

Error conditions

Error Description
gERR_EVT_ISR The function is called from an ISR.
qERR_EVT_NO_NAME Events without a name can’t be opened.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 50

Q=Kernel Reference Guide

40. gEvtOpenTO

PEVT gEvtOpenTO(// Retuns NULL when timed-out
char* pName, // The Name of the object
Iint32_t TimeOut); // The timeout

Possible preemption

Description

This function returns a pointer to an existing object. If the object is created before
this function is executed the function returns immediately. If the object with that
name does not exists the threads is suspended. The timeout specifies how long the
thread is willing to wait.

Parameters and return value

Parameter Description

Returns pEVT The function returns a pointer to the event object.
If the pointer is null the function timed-out.

char *pName The name of the object to open. Objects without a
name, qNO_NAME or a NULL pointer, cannot be
opened.

int32_t TimeOut A positive timeout value specifies a short wait-time

in cycles. We advise to use the macros qUSEC()
and gMSEC() so the value is independent of the
system clock. The minimum is 1 pSecond.

A negative value specifies the real-time wait time
in seconds. The macro’s qSEC() and gDTM() are
available for specifying the wait-time in seconds
and for specific times based on year, month, day,
hour, minute and second.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 51

Q=Kernel Reference Guide

Error conditions

Error Description

gERR_EVT_ISR The function is called from an ISR.

gERR_EVT_NO_START The function is called before Q=Kernel is started.

qERR_EVT_FBR The function is called from a fiber which is not
supported because fibers don't support blocking.

gERR_EVT_NO_NAME Events without a name can’t be opened.

gqERR_EVT_CRITICAL This function cannot be called from within a critical
section

gqERR_EVT_TIMEOUT The specified TimeOut is smaller than 1 pSecond.

gERR_EVT_NO_RTCC The specified TimeOut requires a RTCC which is
not available. (QRTCC=0)

gERR_EVT_NO_TIMER The specified TimeOut requires a timer which is
not available. (qTIMER=0)

qERR_EVT_MEMORY There is no memory available to handle the open
request.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 52

Q=Kernel Reference Guide

41. gEvtSignal

void gEvtSignal(
PEVT pEVt, // The event set to signal
unsigned EventFlags; // The flags to set

Possible preemption

Description

Set one or more event flags in the event set. After the flags are set the threads
that wait for events set are evaluated to see if they match the wait criteria. If any
thread matches the criteria, then the one with highest priority is selected to run.

Threads that have set clear options will clear the flags but after all threads are
checked. This is a significant difference with competing products because they clear
flags during the process and that makes signaling unpredictable.

If this function is called from an ISR the system will evaluate if it can execute the
request immediately. If that's not possible it will spawn the request and will
execute it if all interrupt requests are serviced.

Parameters and return value

Parameter Description

PEVT pEvt A pointer to the event set object. Must be returned
from qEvtCreate() or gEvtOpen() with the correct
name.

unsigned EventFlags The event flags to set. At least one flag should be
set.

Error conditions

Error Description

qERR_EVT _ID The object is not an event set object, has not been
created or points to no object at all.

gqERR_EVT_NO_FLAGS Not one flag in EventFlags is set

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 53

Q=Kernel

Reference Guide

42. gEvtWait

unsigned geEvtWait(
PEVT pEVt,

// The event set to wait for

unsigned EventFlags, // The flags to wait for
WAIT_TYPE WaitType)

; // The type of wait (see below)

Description

Possible preemption

Wait for a specific set of event flags to be set. The required flags are specified in
EventFlags. The function can wait for all specified flags set or any of the flags set.
The developer can specify if the flags need to be cleared if the wait is over.

There is also a non-blocking version of this function. The non-blocking function is

faster.

Parameters and return

value

Parameter

Description

Returns unsigned

Returns O if the function timed out. Any other
value indicates success and returns the events
flags that waked-up the thread before the optional
clear.

PEVT pEvt

A pointer to the event set object. Must be returned
from gEvtCreate() or qEvtOpen() with the correct
name.

unsigned EventFlags

The event flags to wait for. At least one flag must
be set.

WAIT_TYPE WaitType

The type of wait. The following are defined.

WAIT_TYPE_ALL means wait until all flags are set.
This is also called the AND scenario.

WAIT_TYPE_ALL_CLEAR means wait until all flags
are set and if this situation occurs reset the flags
that the thread was waiting for.

WAIT_TYPE_ANY means wait until one of the flags
is set. This is also called the OR scenario.

WAIT_TYPE_ANY_CLEAR means wait until one of
the flags is set and if this situation occurs reset the
flags that triggered this operation. So not all flags
that the thread was waiting for are reset.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353

page 54

Q=Kernel

Reference Guide

Error conditions

Error

Description

gERR_EVT_ISR

The function is called from an ISR.

QERR_EVT_NO_START

The function is called before Q=Kernel is started.

gERR_EVT_FBR

The function is called from a fiber which is not
supported because fibers don't support blocking.

gERR_EVT_ID

The object is not an event object, has not been
created or points to no object at all.

gERR_EVT_NO_FLAGS

No flags in the EventFlags parameter is set

gERR_EVT_WAIT_TYPE

The event type is incorrect

gERR_EVT_CRITICAL

This function cannot be called from within a critical
section.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353 page 55

Q=Kernel

Reference Guide

43. gEvtWaitNB

unsigned geEvtWait(
PEVT pEVt,

unsigned EventFlags, // The flags to wait for
WAIT_TYPE WaitType); // The type of wait (see below)

// The event set to wait for

Before
Start

Thread | Critical Section | Fiber | ISR No preemption

Description

Wait for a specific set of event flags to be set. The required flags are specified in
EventFlags. The function is non-blocking so it will not wait. The developer can
specify if the flags need to be cleared if the function is successful.

Parameters and return value

Parameter

Description

Returns unsigned

Returns O if the function is not successful. Any
other value indicates success and returns the
events flags that returned success before the
optional clear.

PEVT pEvt

A pointer to the event set object. Must be returned
from gEvtCreate() or qEvtOpen() with the correct
name.

unsigned EventFlags

The event flags to wait for. At least one flag must
be set.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 56

Q=Kernel

Reference Guide

Parameter

Description

WAIT_TYPE WaitType

This parameter is called the WaitType but it is
more a comparer. The name is the same to be
compatible with the other functions. The following
are defined.

WAIT_TYPE_ALL means wait until all flags are set.
This is also called the AND scenario.

WAIT_TYPE_ALL_CLEAR means wait until all flags
are set and if this situation occurs reset the flags
that the thread was waiting for.

WAIT_TYPE_ANY means wait until one of the flags
is set. This is also called the OR scenario.

WAIT_TYPE_ANY_CLEAR means wait until one of
the flags is set and if this situation occurs reset the
flags that triggered this operation. So not all flags
that the thread was waiting for are reset.

Error conditions

Error

Description

gERR_EVT_ISR

The function is called from an ISR.

gERR_EVT_ID

The object is not an event object, has not been
created or points to no object at all.

gERR_EVT_NO_FLAGS

No flags in the EventFlags parameter is set

gERR_EVT_WAIT_TYPE

The event type is incorrect

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353 page 57

Q=Kernel

Reference Guide

44. gEvtWaitTO

unsigned gEvtWaitTO(
PEVT pEVt,

WAIT_TYPE WaitType
Iint32_t TimeOut);

unsigned EventFlags, // The flags to wait for
, // The type of wait (see below)

// The event set to wait for

// The maximum wait time

Description

Possible Preemption

Wait for a specific set of event flags to be set. The required flags are specified in
EventFlags. The function is non-blocking so it will not wait. The developer can
specify if the flags need to be cleared if the function is successful.

This is the faster non-blocking version of qEvtWait().Use gEvtWait() if the size of
the code is a concern and gEvtWait() is already used in another place in the
application because using both functions doubles the flash footprint.

Parameters and return

value

Parameter

Description

Returns unsigned

Returns O if the function is not successful. Any
other value indicates success and returns the
events flags that returned success before the
optional clear.

PEVT pEvt

A pointer to the event set object. Must be returned
from gEvtCreate() or qEvtOpen() with the correct
name.

unsigned EventFlags

The event flags to wait for. At least one flag must
be set.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 58

Q=Kernel

Reference Guide

Parameter

Description

WAIT_TYPE WaitType

The type of wait. The following are defined.

WAIT_TYPE_ALL means wait until all flags are set.
This is also called the AND scenario.

WAIT_TYPE_ALL_CLEAR means wait until all flags
are set and if this situation occurs reset the flags
that the thread was waiting for.

WAIT_TYPE_ANY means wait until one of the flags
is set. This is also called the OR scenario.

WAIT_TYPE_ANY_CLEAR means wait until one of
the flags is set and if this situation occurs reset the
flags that triggered this operation. So not all flags
that the thread was waiting for are reset.

int32_t TimeOut

A positive timeout value specifies a short wait-time
in cycles. We advise to use the macros qUSEC()
and gMSEC() so the value is independent of the
system clock. The minimum is 1 pSecond.

A negative value specifies the real-time wait time
in seconds. The macro’s qSEC() and gDTM() are
available for specifying the wait-time in seconds
and for specific times based on year, month, day,
hour, minute and second.

Error conditions

Error

Description

gERR_EVT_ISR

The function is called from an ISR.

QERR_EVT_NO_START

The function is called before Q=Kernel is started.

gERR_EVT_ID

The object is not an event object, has not been
created or points to no object at all.

gERR_EVT_NO_FLAGS

No flags in the EventFlags parameter is set

gERR_EVT_WAIT_TYPE

The event type is incorrect

gERR_EVT_NO_RTCC

The specified TimeOut requires a RTCC which is
not available. (QRTCC=0)

gERR_EVT_NO_TIMER

The specified TimeOut requires a timer which is
not available. (qTIMER=0)

qERR_EVT_TIMEOUT

The specified TimeOut is smaller than 1 pSecond.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353

page 59

Q=Kernel

Reference Guide

45. gErrNotify

unsigned gErrNotify(
unsigned Error);

// The Error that has be Signaled

Description

The developer can provides this function and it will be called when Q-Kernel
throws an unrecoverable error. A prime example of an unrecoverable error is
calling a create function from within an ISR. A prime example of a recoverable
error is a time-out on a wait for an event.

The application should as a minimum log the error and restart the system. More
advanced recover methods are deleting the thread and try to continue. Most errors
are not signaled when the system uses optimized versions of the Q:Kernel that

don’t check.

Error

Description

gERR_TMR_ISR

The function is called from an ISR.

gERR_TMR_MEMORY

There is no memory available to handle the
request.

The blue colored error qERR_TMR_ISR will not be notified with the no-checking
versions. The geRR_TMR_MEMORY error will be notified in all versions.

In most Q-Kernel implementations the developer does not have to specify this
function. In that case the default function will be executed. The default function will
set the variables qvErrNbr and qvErrTcb. In some Q-Kernel implementations the
developer has to provide this function. See the user guide for more information.

Parameters and return

value

Parameter

Description

Return unsigned

The developer must return O if the function is
called with 0.

unsigned Error

The error that will be signaled. If this value is zero
there is no error and the function should return
zero.

A common mistake is that the function can't handle the O case.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353

page 60

Q=Kernel Reference Guide

46. gFbrCreate

void qgFbrCreate(
uint8 t Priority, // The priority of the fiber
void(*pFbr)(void)); // The fiber function itself

No preemption

Description

This function will create a priority fiber. The create does not execute the fiber but
the gFbrSpawnX() will. Changing the priority fiber function is always possible.

Parameters
Parameter Description
uint8_t Priority The priority of the fiber. Must be between 1 and 4
inclusive. 4 is the highest priority and 1 is the
lowest.
void(*pFbr)(void) The function that contains the code of the fiber.
Error conditions
Error Description
gERR_FBR_PRIO The priority is smaller than 1 or larger than 4.
gERR_FBR_ISR The function is called from an ISR.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 61

Q=Kernel Reference Guide

47. gFbrEnqueueO

void gFbrEnqueue0(//
void (*pFbr)Q):; // The function to queue

Description

This function queues a fiber for processing without arguments.

Parameters and return value

Parameter Description

void (*pFbr)() The function to queue as fiber.

Error conditions

None. The user has to define a proper size of the fiber queue. If the size of the
fiber queue is to small the function will loop.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 62

Q=Kernel Reference Guide

48. gFbrEnqueuel

void gFbrEnqueuel(//
void (*pFbr)(void*), // The function to queue
void *pPar); // Par for the function

No preemption

Description

This function queues a fiber for processing with one argument

Parameters and return value

Parameter Description

void (*pFbr)(void¥*) The function to queue as fiber.

void *pPar Parameter 1 for the function. Cast the variable if
the data type is not a void pointer. The size of the
data may not exceed the size of a pointer.

Error conditions

None. The user has to define a proper size of the fiber queue. If the size of the
fiber queue is to small the function will loop.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 63

Q=Kernel Reference Guide

49. gFbrEnqueue?2

void gFbrEnqueue2(//
void (*pFbr)(void*,void*), // The function to queue
void *pParl // Parl for the function
void *pPar2); // Par2 for the function

No preemption

Description

This function queues a fiber for processing with two arguments.

Parameters and return value

Parameter Description

void (*pFbr)(void*,void*) The function to queue as fiber.

void *pParl Parameter 1 for the function. Cast the variable if
the data type is not a void pointer. The size of the
data may not exceed the size of a pointer.

void *pPar Parameter 2 for the function. Cast the variable if
the data type is not a void pointer. The size of the
data may not exceed the size of a pointer.

Error conditions

None. The user has to define a proper size of the fiber queue. If the size of the
fiber queue is to small the function will loop.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 64

Q=Kernel Reference Guide

50. gFbrSpawnX (X =1, 2, 3 or 4) (priority fibers)
void qTskSpawnl();

No preemption

Description

There are four functions to execute priority fibers. They are numbered 1 to 4 and 4
has the highest priority. The function will execute immediately if called from a
thread and will execute after the ISR ended if called from an ISR.

If the function is called before the kernel is started or before the priority fiber is
created with gFbrCreate() the behavior is undefined.

Parameters and return value

None

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 65

Q=Kernel Reference Guide

51. gFbrSpawnRtcc

void qTskSpawnRtcc();

No preemption

Description

This function spawns a fiber to check if something has expired in the RTCC. This
function is available so developers can write their own RTCC clock functions. See
for an example the function yRtcc4.c

Parameters and return value

None

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 66

Q=Kernel Reference Guide

52. qgFbrStatCycles
uint64_t gFbrStatTotalCycles();

No preemption

Description

This function returns the total number of cycles since the start of the statistic
gathering for all fibers and scheduler.

Parameters
Parameter Description
Returns uint64_t The number of cycles

Error conditions

Error Description
gERR_FBR_ISR The function is called from an ISR.
qERR_FBR_STAT_ OFF Statistics is not running

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 67

Q=Kernel Reference Guide

53. gFixAlloc

void* gFixAlloc(// Allocates memory from one of
pFPL pFpl); // the fixed pools

No preemption

Description

The function allocates memory from one of the fixed memory pools and returns the
pointer to the new allocated memory. If there is no memory available the function
returns a null pointer.

Parameters and return value

Parameter Description

Returns void* The function returns a pointer to the allocated
memory block or a null pointer when no memory is
available.

pFPL pFpl The fixed memory pool that has been created with
gFixCreate().

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 68

Q=Kernel Reference Guide

54. gFixAllocClIr

void* gFixAllocCIr(// Allocates memory from one of
pFPL pFpl); // the fixed pools

No preemption

Description

The function allocates memory from one of the fixed memory pools and returns the
pointer to the new allocated memory. If there is no memory available the function
returns a null pointer. The memory is cleared.

Parameters and return value

Parameter Description

Returns void* The function returns a pointer to the allocated
memory block or a null pointer when no memory is
available.

pFPL pFpl The fixed memory pool that has been created with
gFixCreate().

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 69

Q=Kernel

Reference Guide

55. gFixCreate

pFPL gFixCreate(
unsigned Size,

unsigned NbrBlocks); //

// The function creates
// a Tixed memory pool

Description

No preemption

The function creates a fixed memory pool with a specified size and a specified

number of blocks.

Parameters and return value

Parameter

Description

Returns pFPL

A pointer to the new fixed pool. The function
returns null if there is no memory available.

unsigned Size

The size of the memory block to allocate.

unsigned NbrBlocks

The number of blocks that are allocated in the
pool. A value of zero is allowed but the function
will not read anything.

Error conditions

Error

Description

gFPL_ISR

The function is called from an ISR

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 70

Q=Kernel Reference Guide

56. gFixClose

void gFixClose(// The function closes a fixed
pFPL pFpl); // memory pool

No preemption

Description

The function closes a fixed memory pool and returns the memory to the pool.

Parameters and return value

Parameter Description

pFPL pFpl The pool to close

Error conditions

Error Description

gFPL_ISR

The function is called from an ISR

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 71

Q=Kernel Reference Guide

57. (qgFixFree

void gFixFree(// De-allocate memory
void *p); //

No preemption

Description

The function de-allocates memory and returns the memory to the pool. The
developer is responsible that this is a valid pointer and that the memory shouldn’t
be used anymore. This is not checked by the function.

Parameters and return value

Parameter Description

void *p The address of the memory to return.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 72

Q=Kernel Reference Guide

58. gHeaAlloc

void* gHeaAlloc(// Allocates heap memory
unsigned Size); // Size of the memory to
// allocate

No preemption

Description

The function allocates memory from the heap and returns the pointer to the new
allocated memory. If there is no memory available the function returns a null
pointer.

The pointer is aligned on an integer boundary and the size is rounded to a multiply
of the size of an integer. The content of the memory is guaranteed zero.

There is no gHeaFree() function because the heap does not support returning
memory to the heap.

Parameters and return value

Parameter Description

Returns void* The function returns a pointer to the allocated
memory block or a null pointer when no memory is
available.

unsigned Size The size of the memory to allocate

Error conditions

Error Description
gERR_MEM_ ISR The function is called from an ISR.
gERR_MEM_DAMAGE The internal memory structure has been damaged.

This occurs when memory is allocated with a
certain size and the application writes beyond the
allocated size. This does not find all cases of
damaged memory structures but will help the
developer to find some of the issues.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 73

Q=Kernel Reference Guide

59. gHeaSize

unsigned gHeaSize(); // Returns free heap size

No preemption

Description

The function returns the free heap size.

Parameters and return value

Parameter Description

Returns unsigned The function returns the free heap size.

Error conditions

Error Description

gERR_MEM_ ISR The function is called from an ISR.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 74

Q=Kernel Reference Guide

60. gKrnError

void gKrnError(// This function initiates a reset
unsigned Error); // and stores the error information

No preemption

Description

This function stores all error information in a special memory location that will not
be cleared during reset and will reset the processor. Information stored will be
available after a new gKrnlInit() function.

Parameters and return value

Parameter Description

unsigned Error The error that will be signaled.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 75

Q=Kernel Reference Guide

61. gKrnInCritical

unsigned gKrniInCritical();

No preemption

Description

This function returns not O if the kernel is in a critical section and O if not.

Parameters and return value

Parameter Description

return unsigned Return not O if in critical section

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 76

Q=Kernel Reference Guide

62. gKrnlnFiber
unsigned gKrnlnFiber();

No preemption

Description

This function returns not O if the kernel is in a fiber and O if not.

Parameters and return value

Parameter Description

return unsigned Return not O if in fiber

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 77

Q=Kernel Reference Guide

63. gKrnInCritical

unsigned gKrniInCritical();

No preemption

Description

This function returns not O if the kernel is in a critical section and O if not.

Parameters and return value

Parameter Description

return unsigned Return not O if in critical section

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 78

Q=Kernel Reference Guide

64. gKrnlnit

PERR gKrnlnit(
uint32_t ClockFrequency, // MIPS
unsigned ldleThreadStackSize, // 64 good start value
unsigned InterruptStackSize, // 256 good start value
unsigned FiberQueueSize); // 4 good start value

Before

Start No preemption

Description

This function initializes the kernel. In more detail the function executes the
following steps:

e Clears all its memory variables that are used by the system with the
exception of persistent memory used to store errors.

e Setup the memory system and checks if it has enough memory for basic
functionality.

e Create frequently used memory pools.

e Creates memory for the interrupt stack.

e If statistics is enabled it will setup statistics.
e Setup the timer and RTCC

e The system will start a critical section to prevent thread activity before the
start of the system.

e Creates the ldle thread. (ldle thread will not run because the system is in a
critical section that prevents thread activation.)

e The system will check if it was restarted by gKrnError(). If that's the case it
will return a pointer the persisted error structure. If that’s not the case the
system will clear the BOR and POR in the RCON and will return a null
pointer.

The function must be called before any Q-Kernel
function and can only be called once. See the user
guide for more information.

After this function is called the user can create threads, fibers and other objects.
The reference manual specifies which function can be used before the system is
started.

The size of the stack between the initialization and start of Q-Kernel is limited to
the size of the interrupt stack. If more stack space is required the developer can

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 79

Q=Kernel Reference Guide

create a thread with the highest priority and a larger stack and do the work there
or increase the size of the interrupt stack.

Parameters and return value

Parameter Description

Returns pERR The function returns a pointer to the persistent
error structure if the processor was restarted by
gKrnError() or null if that was not the case.

uint32_t ClockFrequency Speed of the processor in MIPS

unsigned ldleTreadStackSize | Normally a value of 64 bytes should be enough. If
the gKrnldleNotification() is implemented it
should be more

unsigned InterruptStackSize | Size of interrupt stack. See the user manual for
more information about the interrupt stack

unsigned FiberQueueSize Size in elements. Minimum of 4 is in most case
enough

Error conditions

Error Description

gERR_KRN_MEM_SIZE There is not enough memory available to initialize
the system and the defined objects.

gERR_KRN_INT_STACK There is not enough memory to create the
interrupt stack. Please check the size of the
interrupt stack

gERR_KRN_INTERRUPT The kernel interrupt is the same as the kernel
timer interrupt.

gERR_THR_* Thread errors during the creation of the Idle
thread.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 80

Q=Kernel Reference Guide

65. gKrnlnitEds

PERR gKrnlnit(
uint32_t ClockFrequency, // MIPS
unsigned ldleThreadStackSize, // 64 good start value
unsigned InterruptStackSize, // 256 good start value

unsigned FiberQueueSize, // 4 good start value
unsigned MaxEdsStackSize); // See user manual
Before No preemption
Start P P

Description

This function initializes the kernel. In more detail the function executes the
following steps:

e Clears all its memory variables that are used by the system with the
exception of persistent memory used to store errors.

e Setup the memory system and checks if it has enough memory for basic
functionality.

e Create frequently used memory pools.

e Creates memory for the interrupt stack.

e If statistics is enabled it will setup statistics.
e Setup the timer and RTCC

e The system will start a critical section to prevent thread activity before the
start of the system.

e Creates the ldle thread. (ldle thread will not run because the system is in a
critical section that prevents thread activation.)

e Will allocate memory to copy the maximum EDS thread stack into.

e The system will check if it was restarted by gKrnError(). If that’s the case it
will return a pointer the persisted error structure. If that’s not the case the
system will clear the BOR and POR in the RCON and will return a null
pointer.

The function must be called before any Q-Kernel
function and can only be called once. See the user
guide for more information.

After this function is called the user can create threads, fibers and other objects.
This manual specifies which function can be used before the system is started.

The size of the stack between the initialization and start of Q-Kernel is limited to
the size of the interrupt stack. If more stack space is required the developer can

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 81

Q=Kernel Reference Guide

create a thread with the highest priority and a larger stack and do the work there
or increase the size of the interrupt stack.

Parameters and return value

Parameter Description

Returns pERR The function returns a pointer to the persistent
error structure if the processor was restarted by
gKrnError() or null if that was not the case.

uint32_t ClockFrequency Speed of the processor in MIPS

unsigned ldleTreadStackSize | Normally a value of 64 bytes should be enough. If
the gKrnldleNotification() is implemented it
should be more

unsigned InterruptStackSize | Size of interrupt stack. See the user manual for
more information about the interrupt stack

unsigned FiberQueueSize Size in elements. Minimum of 4 is in most case
enough

unsigned MaxEdsStackSize This defines the maxiumum EDS thread stack size
that can be used.

Error conditions

Error Description

gERR_KRN_MEM_SIZE There is not enough memory available to initialize
the system and the defined objects.

gERR_KRN_INT_STACK There is not enough memory to create the
interrupt stack. Please check the size of the
interrupt stack

gERR_KRN_INTERRUPT The kernel interrupt is the same as the kernel
timer interrupt.

qERR_THR_* Thread errors during the creation of the Idle
thread.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 82

Q=Kernel Reference Guide

66. gKrnNtfldle
void gKrnNtfldle(); // Called from idle thread.

Description

The developer provides this function and it will be called from the idle thread. It will
be called repeatedly. The idle thread code is listed below:

void xldleThread (void* p) { // The idle thread
while(1) {

gNtfidle(); // gNftldle() called

The developer does not have to specify this function because there is a default
function that just returns to the caller.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 83

Q=Kernel Reference Guide

67. gKrnNtfSwitch

void gNtfSwitch(
pTCB pCurThr, // The Thread that is preempted
pTCB pNextThr); // Next Thread to run

Description

The function will be called when switch notification is enabled and Q-Kernel
switches from one thread to another thread. There is a “weak” function that will be
called when the developer does not provides one.

The developer can use the pTCB structure to store data. The first parameter is the
TCB of the thread that will be preempted and the second parameter is the TCB of
the thread that will we activated. Because the function will be called from a fiber or
a thread, stack requirements can come from the interrupt stack or a thread stack.
The developer should use this function only if absolute necessary because it
creates overhead. Also keep the stack usage to the absolute minimum.

This function can be used to save and restore specific thread context. An example
of this is to save thread related information. By saving and restoring those
registers they can be used by more than one thread without mutex or critical
sections.

After the start of Q-Kernel switch notification is off, so before this function will be
called by Q-Kernel the switch notification must be enabled by executing the
function gKrnSwitchNotificationOn().The default function, defined as “weak” simply
returns to the caller.

The function gKrnSwitchNotificationOff() is also available to disable switch
notification.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 84

Q=Kernel Reference Guide

68. gKrnStack

unsigned gKrnStack(); // Returns free bytes on stack

No preemption

Description

This function returns the least number of bytes that were not used by the interrupt
stack since the start of the RTOS. The developer can use this number to define the
size of the interrupt stack. It does not specify the current number of space on the
stack.

The function is not deterministic and should not be used in production systems.
This function is normally used in debug sessions.

Parameters and return value

Parameter Description

Returns unsigned The worst case number of bytes that were free on
the interrupt stack

Error conditions

Error Description

gERR_KRN_ ISR The function is called from an ISR.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 85

Q=Kernel Reference Guide

69. gKrnStart

void gKrnStart(); // The system never retuns here.

Always preemption

Description

This function will start Q-Kernel and will not return to the caller. The function will
execute the following steps:

e Setup the scheduler interrupt

e Test if the initialization is done and if this function is never called before.
e Setup the kernel timer if specified in the configuration

e Setup the statistics if specified in the configuration

e Setup the RTCC if specified by the system

e End the critical section that was started in gKrnlnit() and this will enable
thread switching

e Start the thread with the highest priority.
The function must be called after gKrnlnit() and after at least after one call to
qThrCreate(). The function can only called once.

Error conditions

Error Description

gERR_KRN_NO_INIT The system did not initialize itself. The function
gKrnlnit() must be called before this function.

gERR_KRN_STARTED The system was already started.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 86

Q=Kernel Reference Guide

70. gKrnStatOff
void gKrnStatOff();

No preemption

Description
The function enables statistics. This function only works if statistics are configured.

Parameters and return value

None

Error conditions

Error Description

gERR_KRN_ISR The function is called from an ISR.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 87

Q=Kernel Reference Guide

71. gKrnStatOn
void gKrnStatOn();

No preemption

Description
The function disables statistics. This function only works if statistics are configured.

Parameters and return value

None

Error conditions

Error Description

gERR_KRN_ISR The function is called from an ISR.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 88

Q=Kernel Reference Guide

72. gKrnSwitchNotificationOff
void gKrnSwitchNotificationOff();

No preemption

Description

This function instruct the scheduler not to call the function gNftSwitch() when it
executes a context switch. See also gKrnSwitchNotificationOn().

Parameters

The function does not accept parameters.

Error conditions

The function does not return any error but running the function from within an ISR
can created unpredictable results.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 89

Q=Kernel Reference Guide

73. gKrnSwitchNotificationOn
void gKrnSwitchNotificationOn();

No preemption

Description

This function instruct the scheduler to call the function gNftSwitch() every time it
executes a context switch. The function gNftSwitch() is defined in Q-Kernel as
weak and just contains a return. The developer must define its own function to use
this functionality. The application must be linked with a library that contains switch
notification. The "Switch Notification" functionality is a heavy load on the system
and Quasarsoft advises to use this functionality only if it is absolute required. See
for more information the User guide.

Parameters

The function does not accept parameters.

Error conditions

The function does not return any error but running the function from within an ISR
can created unpredictable results.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 90

Q=Kernel Reference Guide

74. gKrnTrackingldle

void gKrnTrackingldle(
unsigned* pldleAdr, // Tracking Addres (lIdle)
unsigned IdleBit); // Bit number (lIdle)

No preemption

Description

The function set the tracking for the kernel power mode idle. The developer has to
specify an address of the external port and the bit number in the port.

If the address is NULL tracking is disabled. (This is the default situation). Enabling
or disabling tracking does not influence the performance, therefore tracking is non-

Parameters and return value

Parameter Description

pldleAdr Addres for idle tracking. NULL disables idle
tracking

IdleBit Bit Number for idle tracking

Error conditions

Error Description

gERR_KRN_ISR The function is called from an ISR.

gERR_KRN_IDLE_BIT_NBR | The run bit number is larger then the number of
bits in an interger-1

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 91

Q=Kernel Reference Guide

75. gKrnTrackingRun

void gKrnTrackingSleep(
unsigned* pRunAdr, // Tracking Addres (Running)
unsigned RunBit); // Bit number (Running)

No preemption

Description

The function set the tracking for the kernel power mode Run. The developer has to
specify an address of the external port and the bit number in the port.

If the address is NULL tracking is disabled. (This is the default situation). Enabling
or disabling tracking does not influence the performance, therefore tracking is non-

Parameters and return value

Parameter Description
pRunAdr Addres for run tracking. NULL disables run tracking
RunBit Bit Number for run tracking

Error conditions

Error Description

gERR_KRN_ISR The function is called from an ISR.

gERR_KRN_RUN_BIT_NBR The run bit number is larger then the number of
bits in an interger-1

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 92

Q=Kernel Reference Guide

76. gKrnTrackingSleep

void gKrnTrackingSleep(
unsigned* pSleepAdr, // Tracking Addres (Sleeping)
unsigned SleepBit); // Bit number (Sleeping)

No preemption

Description

The function set the tracking for the kernel power mode sleep. The developer has
to specify an address of the external port and the bit number in the port.

If the address is NULL tracking is disabled. (This is the default situation). Enabling
or disabling tracking does not influence the performance, therefore tracking is non-

Parameters and return value

Parameter Description

pSleepAdr Addres for sleep tracking, NULL disables sleep
tracking

SleepBit Bit Number for sleep tracking

Error conditions

Error Description

gERR_KRN_ ISR The function is called from an ISR.

gERR_KRN_SLEEP_BIT_NB | The run bit number is larger then the number of
R bits in an interger-1

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 93

Q=Kernel Reference Guide

77. gKrnUSecOff
void gKrnUSecOff();

Description

The function disables uSecond gathering.
Parameters and return value

None

Error conditions

Error Description

gERR_KRN_ISR The function is called from an ISR.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 94

Q=Kernel Reference Guide

78. gKrnUSecOn
void gKrnStatOn();

No preemption

Description
The function enables uSecond gathering.
Parameters and return value

None

Error conditions

Error Description
gERR_KRN_ISR The function is called from an ISR.
gERR_KRN_MHZ The clock frequency is not a multiply of 1MHz.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 95

Q=Kernel Reference Guide

79. gKrnVersion

PVER gKrnVersion(); // Returns the version

No preemption

Description

The version is described as major.minor-build So V2.2-1123 means it is major
version 2, minor version 2 and build 1123. Quasarsoft Ltd uses a source control
system for the in-house development and it will increase the build number after
every build including documentation changes even if the build is never distributed.

A minor version increase means in most cases functional improvements.

Support requests should always contain version and build information.

The function returns the version in the structure. The structure is defined in
gKernel.h and is listed below:

typedef struct sVER{
uint8_t major;
uint8_t minor;
uintl6_t build;

} VER;

typedef const VER* pVER;

The following example test the minor version in an “if” statement:

if (gKrnVersion()->minor > 0x01) { // Test version
// Do something i1f version > 1

Parameters and return value

Parameter Description
Returns pVER The function returns a pointer to the version
structure.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 96

Q=Kernel Reference Guide

80. gMemAlloc

void* gMemAlloc(// Allocates memory from one of
unsigned Size); // the pools

No preemption

Description

The function allocates memory and returns the pointer to the new allocated
memory. If there is no memory available the function returns a null pointer.

The function first searches in the pool linked list if a pool of that size exists. If
that’s the case it allocates memory from that pool. If the pool is empty or a pool of

that size does not exist it allocates it from the heap. It will always create a pool of
the correct size.

The pointer is aligned on an integer boundary and the size is rounded up to a
multiply of 8. The content on the memory is un-defined.

Parameters and return value

Parameter Description

Returns void* The function returns a pointer to the allocated
memory block or a null pointer when no memory is
available.

unsigned Size The size of the memory block to allocate.

Error conditions

Error Description

gERR_MEM_ ISR The function is called from an ISR.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 97

Q=Kernel Reference Guide

81. gMemAllocClIr

void* gMemAllocClr(// Allocates memory from the
unsigned Size); // variable memory pool and
// clears 1t.

No preemption

Description

The function allocates memory from the variable memory pool, clears the memory
(0Ox00) and returns the pointer to the new allocated memory. If there is no
memory available the function returns a null pointer.

The function first searches in the pool linked list if a pool of that size exists. If
that’s the case it returns memory from that pool. If the pool is empty or a pool of
that size does not exist it allocates it from the heap.

The pointer is aligned on an integer boundary and the size is rounded up to a
multiply of 8. The content on the memory is zero.

Parameters and return value

Parameter Description

Returns void* The function returns a pointer to the allocated
memory block or a null pointer when no memory is
available.

unsigned Size The size of the memory to allocate.

Error conditions

Error Description

gERR_MEM_ ISR The function is called from an ISR.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 98

Q=Kernel Reference Guide

82. gMemAllocFromPool

void* gMemAllocFromPool (// Allocates memory from a
pMPL pMpl); // memory pool

No preemption

Description

The function allocates memory from the pool and returns a pointer to the new
allocated memory. If there is no memory available the function returns a null

pointer. If the pool is empty and it was not created the function allocates memory
from the heap.

The content on the memory is un-defined.

Parameters and return value

Parameter Description

Returns void* The function returns a pointer to the allocated
memory block or a null pointer when no memory is
available.

pMPL pMpl The address of a memory pool.

Error conditions

Error Description
gERR_MEM_ ISR The function is called from an ISR.
qERR_MEM_ID The object is not a memory pool object, has not
been created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 99

Q=Kernel Reference Guide

83. gMemAllocFromPoolClr

void* gMemAllocFromPoolClr(// Allocates memory from..
pMPL pMpl); // ..a memory pool and.
// .clears the memory.

No preemption

Description

The function allocates a memory block from the pool, clears the memory (0x00)
and returns a pointer to the new allocated memory. If there is no memory
available the function returns a null pointer. If the pool is empty it allocates
memory from the heap.

The content of the memory is zero.

Parameters and return value

Parameter Description

Returns void* The function returns a pointer to the allocated
memory block or a null pointer when no memory is
available.

pMPL pMpl The memory pool to allocate from.

Error conditions

Error Description
gERR_MEM_ ISR The function is called from an ISR.
qERR_MEM_ID The object is not a memory pool object, has not

been created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 100

Q=Kernel Reference Guide

84. gMemAllocFromPoolFast

void* gMemAllocFromPoolFast(// Allocates memory from a
pMPL pMpl); // memory pool

No preemption

Description

The function allocates memory from the pool without parameter checking and
returns a pointer to the new allocated memory. If there is no memory available the
function returns a null pointer. If the pool is empty and it was not created the
function allocates memory from the heap.

The content on the memory is un-defined.

Parameters and return value

Parameter Description

Returns void* The function returns a pointer to the allocated
memory block or a null pointer when no memory is
available.

pMPL pMpl The address of a memory pool.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 101

Q=Kernel Reference Guide

85. gMemFree

void gMemFree(// Frees variable memory
void *p); // Pointer to the memory

No preemption

Description

The function frees memory and returns the memory to one of the variable pools.

Parameters and return value

Parameter Description

void *p A pointer to the memory. This must be the same
pointer as returned from one of the allocation
functions. (gMemAlloc.........)

Error conditions

Error Description
gERR_MEM_ ISR The function is called from an ISR.
qERR_MEM_ID The memory is not created as variable memory or

internal pointers are overwritten.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 102

Q=Kernel

Reference Guide

86. gMemFreeFast

void gMemFreeFast(
void *p);

// Frees variable memory
// Pointer to the memory

Description

No preemption

The function frees memory and returns the memory to one of the variable pools

without parameter checking

Parameters and return

value

Parameter

Description

void *p

A pointer to the memory. This must be the same
pointer as returned from one of the allocation
functions. (gMemAlloc.........)

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 103

Q=Kernel Reference Guide

87. gMemPool

pMPL gMemPool (// Returns the pool with the
// specified blocksize
unsigned Size); // Size of the blocks

No preemption

Description

The function returns a pointer to the pool with the specified block size. If the pool

does not exist it will create the pool otherwise it will simply return the existing
pool.

Creating the pool will cost a small amount of memory which is allocated from the
heap. The function will return a null pointer if the pool is not available and there is
no memory available on the heap to create the pool.

Parameters and return value

Parameter Description

Returns pMPL The function returns a pointer to the pool with the
specified block size or a null pointer if a pool with
that block size does not exist and there is no heap
memory available to create the pool.

unsigned Size The size of the block. The size is rounded up to a
multiply of 8.

Error conditions

Error Description

gERR_MEM_ ISR The function is called from an ISR.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 104

Q=Kernel

Reference Guide

88. gMemPoolAdd

unsigned gMemPoolAdd(//
pMPL pMpl, //
unsigned NbrBlocks); //

Description

No preemption

The function allocates memory from the heap and adds blocks to the memory pool.

Parameters and return

value

Parameter

Description

Returns unsigned

The function returns the number memory blocks
that where added.

pMPL pMpl

The memory pool.

unsigned NbrBlocks

The number of blocks that are to be added to the
pool.

Error conditions

Error

Description

gERR_MEM_ISR

The function is called from an ISR.

gERR_MEM_ID

The object is not a memory pool object, has not
been created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 105

Q=Kernel

Reference Guide

89. gMemPoolNext

pMPL gMemPoo INext(
pMPL pMpl);

// Returns the next memory
// pool

Description

No preemption

The function returns a pointer to the next pool. To get the first memory pool

specify pMpl as NULL.

Parameters and return

value

Parameter

Description

Returns pMPL

The function returns the next memory pool.

pMPL pMpl

The memory pool

Error conditions

Error

Description

gERR_MEM_ISR

The function is called from an ISR.

gERR_MEM_ID

The object is not a memory pool object, has not
been created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 106

Q=Kernel Reference Guide

90. gMemPoolSize

unsigned gMemPoolSize(//
pMPL pMpl); //

No preemption

Description

The function returns the size of the pool.

Parameters and return value

Parameter Description
Returns unsigned The function returns the size of the memory pool.
pMPL pMpl The memory pool

Error conditions

Error Description
gERR_MEM_ ISR The function is called from an ISR.
qERR_MEM_ID The object is not a memory pool object, has not

been created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 107

Q=Kernel Reference Guide

91. gMemRealloc

void* gMemReal loc(// Reallocates memory
void* p, // memory to re-allocate
unsigned Size); // the new size

No preemption

Description

The function re-allocates memory and returns the pointer to the new allocated
memory. If there is no memory available the function returns a null pointer.

The function checks if the current memory fits the new size. If that is the case it
just returns the pointer to the same memory block.

If the current memory does not fits the new size, new memory is allocated with the
gMemAlloc() function. If memory of that size can’t be allocated the function returns
a null pointer. In that case the original memory block is still intact. If the memory
is available the information in the original memory is copied into the new block and
the existing memory block is returned to the pool. The function will return the new
pointer.

If the p argument is NULL the function acts like gMemAlloc, allocating a block of
memory and returning a pointer to it.

The pointer is aligned on an integer boundary and the size is rounded up to a
multiply of 8. The content on the memory is un-defined.

Parameters and return value

Parameter Description

Returns void* The function returns a pointer to the allocated
memory block or a null pointer when no memory is
available.

void *p Pointer to an existing memory block

unsigned Size The size of the memory block to allocate.

Error conditions

Error Description
gERR_MEM_ ISR The function is called from an ISR.
qERR_MEM_ID The memory has not been allocated as variable
memory or internal pointers are overwritten.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 108

Q=Kernel Reference Guide

92. gMsgAlloc

pMSG gMsgAlloc(// Allocates a message
uintl6é_t Size, // with the specified size
uintlé _t MsgType); // and a specified message type

No preemption

Description

Allocates a message and returns a pointer to the message. The use count is set to
one. The function uses memory from the variable memory pool.

Parameters and return value

Parameter Description

Returns pMSG A pointer to the message. The function returns a
null pointer if there is no memory available.

uintl6_t Size The maximum size of the message. The Size must
be between 8 and 32000 inclusive.

uintl6_t MsgType The type of message specified by the user

Error conditions

Error Description
gERR_MSG_ ISR The function is called from an ISR.
gERR_MSG_SIZE The size is incorrect.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 109

Q=Kernel

Reference Guide

93. gMsgAllocFast

pMSG gMsgAlloc(
pMPL pMpl,
uintlé_t MaxSize,
uintl6_t MsgType);

// Allocates a message

// pool to use

// maximim size

// and a specified message type

Description

No preemption

Allocates a message and returns a pointer to the message. The use count is set to
one. The function uses memory from the specified variable memory pool. The
maximum size is to specify the size of the message. This must be smaller or equal
to the pool size larger then the pool size — 16. So the pool and max size must be

not too far out.

Parameters and return value

Parameter

Description

Returns pMSG

A pointer to the message. The function returns a
null pointer if there is no memory available.

uintl6_t Size

The maximum size of the message. The MaxSize
must be between poolSize - 15 and poolSize
inclusive.

uintl6_t MsgType

The type of message specified by the user

Error conditions

Error

Description

gERR_MSG_ISR

The function is called from an ISR.

gERR_MSG_SIZE

The size is incorrect.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 110

Q=Kernel Reference Guide

94. gMsgCopy

pMSG gMsgCopy (// Allocates a message and copies
pMSG pMsg); // to context of this message

No preemption

Description

Allocates a message, copies the context of the message into the new message and
returns a pointer to the message. The use count is set to one.

Parameters and return value

Parameter Description

Returns pMSG A pointer to the message. The function returns a
null pointer if there is no memory available.

unsigned pMSG A pointer to the message to copy.

Error conditions

Error Description

gqERR_MSG_ ISR The function is called from an ISR but the message
is variable memory and not fixed memory.

gqERR_MSG_ID The message is not a message returned by
gMsgAlloc() or gMsgCopy().

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 111

Q=Kernel Reference Guide

95. gMsgDataSize

uintl6_t gMsgDataSize(// returns the real

size of
pMSG p); // the message

No preemption

Description

The function returns the real message size.

Parameters and return value

Parameter Description
uintl6_t Returns the maximum message size
pMSG p The message pool

Error conditions

Error Description

qERR_MSG_ID This is not a valid message pool

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 112

Q=Kernel Reference Guide

96. gMsgFixAlloc

pMSG gMsgFixAlloc(// Allocates a message
pFIX pFix); // From fixed memory

No preemption

Description

Allocates a message and returns a pointer to the message. The use count is set to
one. The function uses fixed memory blocks to allocate the memory so it can be
called from an interrupt.

Parameters and return value

Parameter Description

Returns pMSG A pointer to the message. The function returns a
null pointer if there is no memory available.

pFIX pFix A pointer to a fixed memory block returned from
gMsgFixCreate()

Error conditions

No errors are thrown

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 113

Q=Kernel

Reference Guide

97. gMsgFixCreate

pMSG gMsgFixCreate(
uintl6_t MsgSize,

uintl6_t NbrMessages);// Number of messages to hold

// Create a fixed message pool
// Size of the message

Description

No preemption

Allocates a message from the fixed message pool and returns a pointer to the fixed
memory pool. It returns a null pointer if there is no memory available.

Parameters and return value

Parameter

Description

Returns pMSG

A pointer to the fixed memory pool message. The
function returns a null pointer if there is no
memory available.

uintl6é_t MsgSize

The size of the message.

uintl6_t NbrMessages

The maximum number of messages the pool can
hold.

Error conditions

Error

Description

gFIX_ISR

The function is called from an ISR

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 114

Q=Kernel Reference Guide

98. gMsgFree

void gMsgFree(// Free a message
pMSG pMsg); // This message

No preemption

Description

Decrements the use-count of a message and if the use-count reaches 0 the
message memory is de-allocated.

If this function is called from an ISR the system will evaluate if it can execute the
request immediately. If that's not possible it will spawn the request and will
execute it if all interrupt requests are serviced.

Parameters and return value

Parameter Description

pMSG pMsg A pointer to the message.

Error conditions

Error Description

qERR_MSG_ID The message is not allocated by qMsgAlloc().

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 115

Q=Kernel Reference Guide

99. gMsgMaxSize

uintl6_t gMsgMaxSize(// returns the max size of
pMSG p); // the message

No preemption

Description

The function returns the maximum message size.

Parameters and return value

Parameter Description
uintl6_t Returns the maximum message size
pMSG p

The message pool

Error conditions

Error Description

qERR_MSG_ID This is not a valid message pool

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 116

Q=Kernel Reference Guide

100. gMsgPublish

void gMsgPublish(
pPUB pPub, // The publish object
pMSG pMsg); // The message to send

No preemption

Description
This function publishes a message to the subscribers.

The message system will increase the use-count of the message by one for every
subscriber. This makes development simple because the thread does not have to
keep track how the message is used by other threads or fibers.

If this function is called from an ISR the system will evaluate if it can execute the
request immediately. If that's not possible it will spawn the request and will
execute it if all interrupt requests are serviced.

Parameters and return value

Parameter Description

pPQUE pQue A pointer to the queue object. Must be returned
from gQueCreate() or qQueOpen() with the correct
name.

pMSG pMsg The message to be published to all subscribers.

Error conditions

Error Description

qERR_QUE_ID The object is not a queue object, has not been
created or points to no object at all.

qERR_MSG_ID The message is not allocated by qMsgAlloc().

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 117

Q=Kernel Reference Guide

101. gMsgRead

pMSG gMsgRead(// returns pointer to message
pPIP pPip); // The pipe to read from

Possible preemption

Description

This function reads a message from a pipe. The function returns NULL if there is no
information in the pipe. The system will notify the writer that it has read the pipe.

If this function is called from an ISR the system will spawn the notification of the
writer, so the writer will never be notified in an ISR.

Parameters and return value

Parameter Description
Returns pMSG The message read from the pipe or NULL
pPIP pPip The pipe object to read from.

Error conditions

Description
Error

gqERR_PIP_ID The object is not a pipe object, has not been
created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 118

Q=Kernel

Reference Guide

102. gMsgReceive

pMSG gMsgReceive(
PQUE pQue);

// Returns a message
// The message queue to read

Thread

Description

Possible preemption

The function will return immediately if there is a message available or wait for a
message to become available. Multiple threads can wait for a message but only the
thread with the highest priority will receive the message. Other waiting threads will

not receive this message.

Parameters and return

value

Parameter

Description

Returns pMSG

Returns a pointer to the message. If a time-out
occurs the function will return a null pointer.

PQUE pQue

A pointer to the queue object. Must be returned
from gQueCreate() or qQueOpen() with the correct
name.

Error conditions

Error

Description

gERR_QUE_ISR

The function is called from an ISR.

gERR_QUE_NO_START

The function is called before the kernel is started.

gERR_QUE_FBR

The function is called from a fiber which is not
supported because fibers don't support blocking.

gERR_QUE_ID

The object is not a queue object, has not been
created or points to no object at all.

gERR_QUE_CRITICAL

The function is called within a critical section.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 119

Q=Kernel Reference Guide

103. gMsgReceiveNB

pMSG gMsgReceiveNB(
PQUE pQue); // The message queue to read

Thread | Critical Section | Fiber No preemption

Description

The function will return immediately with a message if there is one available or
returns a NULL pointer.

Parameters and return value

Parameter Description

Returns pMSG Returns a pointer to the message. The function will
return a null pointer if no message is available.

pQUE pQue A pointer to the queue object. Must be returned
from gqQueCreate() or qQueOpen() with the correct
name.

Error conditions

Error Description

gERR_QUE_ISR The function is called from an ISR.
gERR_QUE_NO_START The function is called before the kernel is started.
gqERR_QUE_ID The object is not a queue object, has not been

created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 120

Q=Kernel Reference Guide

104. gMsgReceiveTO

pMSG gMsgReceiveTO(// Returns a message
pPQUE pQue, // The message queue to read
Iint32_t TimeOut); // The Timeout

Possible preemption

Description

The function will return immediately if there is a message available or wait for a
message to become available. The TimeOut specifies how long the thread is willing
to wait. Multiple threads can wait for a message but only the thread with the
highest priority will receive the message. Other waiting threads will not receive this
message.

Parameters and return value

Parameter Description

Returns pMSG Returns a pointer to the message. If a time-out
occurs the function will return a null pointer.

pQUE pQue A pointer to the queue object. Must be returned
from gQueCreate() or qQueOpen() with the correct
name.

int32_t TimeOut A positive timeout value specifies a short wait-time

in cycles. We advise to use the macros qUSEC()
and gMSEC() so the value is independent of the
system clock. The minimum is 1 pSecond.

A negative value specifies the real-time wait time
in seconds. The macro’s qSEC() and gDTM() are
available for specifying the wait-time in seconds
and for specific times based on year, month, day,
hour, minute and second.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 121

Q=Kernel

Reference Guide

Error conditions

Error

Description

gERR_QUE_ISR

The function is called from an ISR.

gERR_QUE_NO_START

The function is called before the kernel is started.

gERR_QUE_FBR

The function is called from a fiber which is not
supported because fibers don't support blocking.

gERR_QUE_ID

The object is not a queue object, has not been
created or points to no object at all.

gERR_QUE_NO_RTCC

The specified TimeOut requires a RTCC which is
not available. (QRTCC=0)

gERR_QUE_NO_TIMER

The specified TimeOut requires a timer which is
not available. (qTIMER=0)

gERR_QUE_TIMEOUT

The specified TimeOut is smaller than 1 pSecond.

gERR_QUE_CRITICAL

This function cannot be called from within a critical
section.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353 page 122

Q=Kernel Reference Guide

105. gMsgSend

unsigned gMsgSend(
pQUE pQue, // The queue to send to
pMSG pMsQ); // The message to send

Possible preemption

Description

This function sends a message to a queue and if there is no space it will wait until
there is space available. If there is a receiving thread waiting it will immediately
deliver the message to the waiting thread without placing the message in the
queue. A receiving thread will be made ready to run.

The message system will increase the use-count of the message by one so the
sender can free the message immediately. This makes development simple
because the thread does not have to keep track how the message is used by other
threads or fibers.

Parameters and return value

Parameter Description

Returns unsigned A zero value indicates that the function timed-out.
A value of 1 indicates success.

pQUE pQue A pointer to the queue object. Must be returned
from gqQueCreate() or qQueOpen() with the correct
name.

pMSG pMsg The message to send to the queue or a waiting
thread.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 123

Q=Kernel Reference Guide

Error conditions

Error Description
gERR_QUE_ISR The function is called from an ISR.
gERR_QUE_NO_START The function is called before Q=Kernel is started.
gqERR_QUE_FBR The function is called from a fiber which is not

supported because fibers don't support blocking.

gqERR_QUE_ID The object is not a queue object, has not been
created or points to no object at all.

gqERR_MSG_ID The message is not allocated by qMsgAlloc().
gERR_QUE_CRITICAL This function cannot be called from within a critical
section.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 124

Q=Kernel Reference Guide

106. gMsgSendNB

unsigned gMsgSend(
pPQUE pQue, // The queue to send to
pMSG pMsg); // The message to send

No preemption

Description

This function sends a message to a queue and will return a non-zero value if
successful. If there is no space it will return a value of zero. If there is a receiving
thread waiting it will immediately deliver the message to the waiting thread without
placing the message in the queue. Multiple threads can send messages but only
one thread can wait on a queue to become available for sending.

The message system will increase the use-count of the message by one so the
sender can free the message immediately. This makes development simple
because the thread does not have to keep track how the message is used by other
threads or fibers.

Parameters and return value

Parameter Description

Returns unsigned A zero value indicates that the queue is full. A
value of 1 indicates success.

pQUE pQue A pointer to the queue object. Must be returned
from gQueCreate() or qQueOpen() with the correct
name.

pMSG pMsg The message to send to the queue or a waiting
thread.

Error conditions

Error Description
gERR_QUE_ISR The function is called from an ISR.
qERR_QUE_ID The object is not a queue object, has not been

created or points to no object at all.

gqERR_MSG_ID The message is not allocated by qMsgAlloc().

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 125

Q=Kernel Reference Guide

107.gMsgSendTO

unsigned gMsgSendTO(

pQUE pQue, // The queue to send to
pMSG pMsg, // The message to send
int32_t TimeOut); // The timeout

Description

Possible preemption

This function sends a message to a queue and if there is no space it will wait until
there is space available or will timeout. If there is a receiving thread waiting it will
immediately deliver the message to the waiting thread without placing the
message in the queue. A receiving thread will be made ready to run.

The message system will increase the use-count of the message by one so the
sender can free the message immediately. This makes development simple
because the thread does not have to keep track how the message is used by other
threads or fibers.

Parameters and return value

Parameter Description

Returns unsigned A zero value indicates that the function timed-out.
A value of 1 indicates success.

pQUE pQue A pointer to the queue object. Must be returned
from gQueCreate() or qQueOpen() with the correct
name.

pMSG pMsg The message to send to the queue or a waiting
thread.

int32_t TimeOut A positive timeout value specifies a short wait-time

in cycles. We advise to use the macros qUSEC()
and gMSEC() so the value is independent of the
system clock. The minimum is 1 pSecond.

A negative value specifies the real-time wait time
in seconds. The macro’s qSEC() and gDTM() are
available for specifying the wait-time in seconds
and for specific times based on year, month, day,
hour, minute and second.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 126

Q=Kernel

Reference Guide

Error conditions

Error

Description

gERR_QUE_ISR

The function is called from an ISR.

gERR_QUE_NO_START

The function is called before Q=Kernel is started.

gERR_QUE_FBR

The function is called from a fiber which is not
supported because fibers don't support blocking.

gERR_QUE_ID

The object is not a queue object, has not been
created or points to no object at all.

gERR_MSG_ID

The message is not allocated by qMsgAlloc().

gERR_QUE_CRITICAL

This function cannot be called from within a critical
section.

gERR_QUE_NO_RTCC

The specified TimeOut requires a RTCC which is
not available. (QRTCC=0)

gERR_QUE_NO_TIMER

The specified TimeOut requires a timer which is
not available. (qTIMER=0)

gERR_QUE_TIMEOUT

The specified TimeOut is smaller than 1 pSecond.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353 page 127

Q=Kernel Reference Guide

108. gMsgWrite

unsigned gMsgWrite(7/
pPIP pPip, // The pipe to write into
pMSG pMsg); // A pointer to the message

Possible preemption

Description

This function writes a message into the pipe. The function returns O if there is no
space in the pipe and 1 if the message is written. The system will notify the reader
that this function has been executed.

If this function is called from an ISR the system will spawn the notification of the
writer so the writer will never be notified in an ISR.

Parameters and return value

Parameter Description

Returns unsigned Zero if no space and 1 if the message is written.
pPIP pPip The pipe object to write to.

pPMSG pMsg The message to be written in the pipe.

Error conditions

Error Description

qERR_PIP_ID The object is not a pipe object, has not been
created or points to no object at all.

qERR_MSG_ID The object is not a message object, has not been
created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 128

Q=Kernel

Reference Guide

109. gMtxClose

pMTX pMtx)

void gMtxClose(

// The mutex to close

Description

No preemption

Closes a mutex and returns the resources back to the resource pool. It is the
developer responsibility to make sure that the mutex is not used by other threads.
The function will test if any thread has the mutex locked but it does not detect if
other threads are using this mutex object. The system will invalidate the object so
other function can’t use the object accidentally.

Parameters and return value

Parameter

Description

pPMTX pMtx

A pointer to the object. Must be returned from the
gMtxCreate() or gMtxOpen() function with the
correct name.

Error conditions

Error

Description

gERR_MTX_ISR

The function is called from an ISR.

gERR_MTX_ID

The object is not a mutex object, has not been
created or points to no object at all.

gERR_MTX_IN_USE

A thread has locked the mutex so it can’t be
closed. The system can’'t detect if other threads
are using this mutex.

The developer is responsible for checking if the mutex object is not

used anymore.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353 page 129

Q=Kernel Reference Guide

110. gMtxCreate

pMTX gMtxCreate(
char *pName, // The Name of the mutex
bool Lock); // 1f true create 1t locked

Possible preemption

Description

Before a mutex can be used, it has to be created by calling this function. On
creation, the mutex can be locked. If there is an open request for the mutex with
this name that thread will be readied, this creates a possible preemption. Multiple
threads can wait for the object to be created and all threads will be readied.

The function needs memory for its operation, that’s being freed when gMtxClose()
end the use of the mutex. The function tries to allocate memory from the variable
pool or from the heap. If this fails the system throws the error to indicate failure.
To prevent this error it is a good practice to create enough objects during
initialization.

Parameters and return value

Parameter Description
Returns pMTX The function returns a pointer to the mutex object.
char *pName The name of the mutex. The name must be unique

within other mutex objects or gNO_NAME which is
a null pointer. gMtxOpen() can be used to locate
the object if the name is not a null pointer.

uint8_t Lock A non-zero value will lock the Mutex after creation.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 130

Q=Kernel Reference Guide

Error conditions

Error Description
gqERR_MTX_ISR The function is called from an ISR.
qERR_MTX_FBR The function is called from a fiber. Only threads

can own mutexes.

gqERR_MTX_NAME_IN_USE The name is already in use for another object

gqERR_MTX_MEMORY There is no memory available to handle the
request.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 131

Q=Kernel Reference Guide

111. gMtxLock

unsigned gMtxLock(
pMTX pMtx) ; // The mutex to lock

Thread Possible preemption

Description

Wait for the mutex to become available. The function will return immediately if the
mutex is available or wait for the mutex to become available. The function
implements the priority inheritance mechanism to overcome priority inversion.
Mutexes are owned by threads and for that reason it is impossible to lock a mutex
from a fiber.

There is also a non-blocking version of this function. The non-blocking function is
faster. Use this function if the size of the code is a concern and this function is
already used in another place in the application because using both functions
doubles the flash footprint.

Parameters and return value

Parameter Description

Returns unsigned Returns O if timed out and 1 if mutex is locked

pMTX pMtx A pointer to the mutex object. Must be returned
from gqMtxCreate() or qMtxOpen() with the correct
name.

Error conditions

Error Description
qERR_MTX_ISR The function is called from an ISR.
qERR_MTX_ID The object is not a mutex object, has not been

created or points to no object at all.

qERR_MTX_FBR The function is called from a fiber. Only threads
can own mutexes.

gqERR_MTX_NO_START The function is called before Q-Kernel is started.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 132

Q=Kernel Reference Guide

112. gMtxLockNB

unsigned gMtxLockNB(
pPMTX pMtx;) // The mutex to lock

No preemption

Description

Check if the mutex is available and lock it. Mutexes are owned by threads and for
that reason it is impossible to lock a mutex from a fiber.

This is the non-blocking version of gMtxLock().This function is faster. Use
gMtxLock() if the size of the code is a concern and gMtxLock() is already used in
another place in the application because using both functions doubles the flash
footprint.

Parameters and return value

Parameter Description

Returns unsigned Returns O if timed out and 1 if mutex is locked

pPMTX pMtx A pointer to the mutex object. Must be returned
from gqMtxCreate() or gMtxOpen() with the correct
name.

Error conditions

Error Description
gERR_MTX_ISR The function is called from an ISR.
qERR_MTX_ID The object is not a mutex object, has not been

created or points to no object at all.

qERR_MTX_FBR The function is called from a fiber. Only threads
can own mutexes.

gERR_MTX_NO_START The function is called before Q=Kernel is started.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 133

Q=Kernel Reference Guide

113. gMtxLockTO

unsigned gMtxLockTO(

pMTX pMtx, // The mutex to lock
int32_t TimeOut); //

Possible preemption

Description

Wait for the mutex to become available. The function will return immediately if the
mutex is available or wait for the mutex to become available. The function
implements the priority inheritance mechanism to overcome priority inversion.

Mutexes are owned by threads and for that reason it is impossible to lock a mutex
from a fiber.

There is also a non-blocking version of this function. The non-blocking function is
faster. Use this function if the size of the code is a concern and this function is

already used in another place in the application because using both functions
doubles the flash footprint.

Parameters and return value

Parameter Description

Returns unsigned Returns O if timed out and 1 if mutex is locked

pPMTX pMtx A pointer to the mutex object. Must be returned
from gqMtxCreate() or gMtxOpen() with the correct
name.

int32_t TimeOut A positive timeout value specifies a short wait-time

in cycles. We advise to use the macros qUSEC()
and gMSEC() so the value is independent of the
system clock. The minimum is 1 pSecond.

A negative value specifies the real-time wait time
in seconds. The macro’s qSEC() and gDTM() are
available for specifying the wait-time in seconds
and for specific times based on year, month, day,
hour, minute and second.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 134

Q=Kernel

Reference Guide

Error conditions

Error

Description

gERR_MTX_ISR

The function is called from an ISR.

gERR_MTX_NO_START

The function is called before Q=Kernel is started.

gERR_MTX_ID

The object is not a mutex object, has not been
created or points to no object at all.

gERR_MTX_NO_RTCC

The specified TimeOut requires a RTCC which is
not available. (QRTCC=0)

gERR_MTX_NO_TIMER

The specified TimeOut requires a timer which is
not available. (qTIMER=0)

qERR_MTX_TIMEOUT

The specified TimeOut is smaller than 1 pSecond.

gERR_MTX_FBR

The function is called from a fiber. Only threads
can own mutexes.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353 page 135

Q=Kernel

Reference Guide

114. gMtxOpen

pMTX gMtxOpen(
char *pName);

// Retuns NULL when timed-out
// The Name of the Mutex

Description

Possible preemption

This function returns a pointer to an existing mutex object. If the object is created
before this function is executed the function returns immediately. If the object with
that name does not exists the threads is suspended.

Parameters and return value

Parameter

Description

Returns pMTX

The function returns a pointer to the mutex object.
If this pointer is a null pointer the function timed-
out.

char *pName

The name of the object to open. Objects without a
name, dNO_NAME or a NULL pointer, cannot be
opened.

Error conditions

Error

Description

gERR_MTX_ISR

The function is called from an ISR.

gERR_MTX_NO_START

The function is called before Q-Kernel is started.

gERR_MTX_FBR

The function is called from a fiber. Only threads
can own mutexes.

gERR_MTX_NO_NAME

Mutexes without a name can’t be opened.

gERR_MTX_CRITICAL

This function cannot be called from within a critical
section.

gERR_MTX_MEMORY

There is no memory available to handle the open
request.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353 page 136

Q=Kernel Reference Guide

115. gMtxOpenNB

pMTX gMtxOpenNB(//
char *pName); // The name of the mutex

No preemption

Description

This function returns a pointer to an existing mutex object.

Parameters and return value

Parameter Description
Returns pMTX The function returns a pointer to the event object.
The function returns NULL if the object does not
exist.
char *pName The name of the object to open. Objects without a
name, dqNO_NAME or a NULL pointer, cannot be
opened.

Error conditions

Error Description
gERR_PIP_ISR The function is called from an ISR.
gERR_PIP_NO_NAME Pipes without a name can’t be opened.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 137

Q=Kernel Reference Guide

116. gMtxOpenTO

pPMTX gMtxOpenTO(// Retuns NULL when timed-out
char *pName, // The Name of the object
Iint32_t TimeOut); // The timeout

Possible preemption

Description

This function returns a pointer to an existing object. If the object is created before
this function is executed the function returns immediately. If the object with that
name does not exists the threads is suspended. The timeout specifies how long the
thread is willing to wait.

Parameters and return value

Parameter Description

Returns pMTX The function returns a pointer to the mutex object.
If the pointer is null the function timed-out.

char *pName The name of the object to open. Objects without a
name, qNO_NAME or a NULL pointer, cannot be
opened.

int32_t TimeOut A positive timeout value specifies a short wait-time

in cycles. We advise to use the macros qUSEC()
and gMSEC() so the value is independent of the
system clock. The minimum is 1 pSecond.

A negative value specifies the real-time wait time
in seconds. The macro’s qSEC() and gDTM() are
available for specifying the wait-time in seconds
and for specific times based on year, month, day,
hour, minute and second.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 138

Q=Kernel

Reference Guide

Error conditions

Error

Description

gERR_MTX_ISR

The function is called from an ISR.

gERR_MTX_NO_START

The function is called before Q=Kernel is started.

gERR_MTX_FBR

The function is called from a fiber. Only threads
can own mutexes.

gERR_MTX_NO_NAME

Mutexes without a name can’t be opened.

qERR_MTX_CRITICAL

This function cannot be called from within a critical
section.

gERR_MTX_NO_RTCC

The specified TimeOut requires a RTCC which is
not available. (QRTCC=0)

gERR_MTX_NO_TIMER

The specified TimeOut requires a timer which is
not available. (qTIMER=0)

qERR_MTX_TIMEOUT

The specified TimeOut is smaller than 1 pSecond.

gERR_MTX_MEMORY

There is no memory available to handle the open
request.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353 page 139

Q=Kernel Reference Guide

117. gMtxOwner

pTCB gMtxOwner (
pPMTX pMtx); // The mutex

No preemption

Description

This function returns the owner of the specified mutex or null if the mutex is not
owned by anybody.

Parameters and return value

Parameter Description

Returns pTCB Returns O if there is no owner and otherwise the
TCB of the thread

pPMTX pMtx A pointer to the mutex object. Must be returned
from gqMtxCreate() or qMtxOpen() with the correct
name.

Error conditions

Error Description
gqERR_MTX_ ISR The function is called from an ISR.
qERR_MTX_ID The object is not a mutex object, has not been

created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 140

Q=Kernel

Reference Guide

118. gMtxUnlock

pPMTX pMtx) ;

void gMtxUnlock(

// The mutex to unlock

Description

Possible preemption

This function unlocks a locked mutex. If any threads are trying to lock the mutex,
then the one with highest priority is selected and given the lock that was just
released. That thread is enabled for thread scheduling purposes.

Parameters and return value

Parameter

Description

pPMTX pMtx

A pointer to the mutex object. Must be returned
from gqMtxCreate() or qMtxOpen() with the correct
name.

Error conditions

Error

Description

gERR_MTX_ISR

The function is called from an ISR.

gERR_MTX_ID

The object is not a mutex object, has not been
created or points to no object at all.

gERR_MTX_FBR

The function is called from a fiber. Only threads
can own mutexes.

gERR_MTX_NO_START

The function is called before Q-Kernel is started.

gERR_MTX_OWNER

The mutex is not unlocked by the owner of the
mutex.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353 page 141

Q=Kernel Reference Guide

119. gPipBlockSize

unsigned gPipBlockSize(// returns block size
pPIP pPip);

No preemption

Description

This function returns the block size and is the same as the parameter BlockSize in
gPipCreate().

Parameters and return value

Parameter Description

Returns unsigned The block size of the pipe. This is the same as the
parameter BlockSize in gPipCreate()

pPIP pPip The pipe object to get the information from.

Error conditions

Description
Error

gERR_PIP_ID The object is not a pipe object, has not been
created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 142

Q=Kernel Reference Guide

120. gPipClose

void qgPipClose(
pPIP pPip); // The Pipe to close

No preemption

Description

Closes a pipe and returns the resources back to the resource pool. It is the
developer responsibility to make sure that the pipe is not used by other threads,
fibers or ISRs. The system will invalidate the object so other function can’t use the
object accidentally.

Parameters and return value

Parameter Description

pPIP pPip A pointer to the object. Must be returned from the
gPipCreate() or qPipOpen() function with the
correct name.

Error conditions

Error Description
gERR_PIP_ISR The function is called from an ISR.
qERR_PIP_ID The object is not a pipe object, has not been

created or points to no object at all.

The developer is responsible for checking that the pipe is not is use.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 143

Q=Kernel Reference Guide

121. gPipCreate
pPIP gPipCreate(

char *pName, // The Name of the pipe
uintlé_t BlockSize, // Size of one block
uintleé_t MaxBlocks, // Maximum blocks

void (*pNtfReader)(pPIP,unsigned),// Notify reader
void (*pNtfWriter)(pPIP,unsigned));
// Notify writer

Possible preemption

Description

Before a pipe can be used, it has to be created by calling this function. If there is
an open request for the pipe with this name that thread will be readied, which
creates a possible preemption. Multiple threads can wait for the object to be
created and all threads will be readied.

A pipe is a communication mechanism between threads, fibers and ISR’s. The pipe
can be read or written by an ISR’s but not both at the same time and only from
one ISR level. If a pipe is written to, the notify reader function is called and when a
pipe is read from, the notify writer function is called.

If the BlockSize is a multiply of the integer size all reads and writes must be
integer aligned. The compiler aligns structure so that is normally not a problem.

If the pipe is used for messages you must specify the BlockSize as sizeof(pMSG).

The function needs memory to create the object. It tries to allocate memory from
the variable memory pool or the heap.

The developer must give every object a unique name.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 144

Q=Kernel Reference Guide

Parameters and return value

Parameter Description
Returns pPIP The function returns a pointer to the pipe object.
char *pName The name of the pipe. The name must be unique

within other pipe objects or gNO_NAME which is a
null pointer. gPipOpen() can be used to locate the
object if the name is not a null pointer.

uint8_t BlockSize The size of one block. The system will use this
value and the next one to determine the size of
the pipe. Use the C sizeof() keyword so the value
is automatically adjusted if you migrate to another
processor. Use sizeof(pMSG) for messages.

uintl6_t MaxBlocks The number of blocks that the pipe can hold. The
system will allocate enough space to hold the data.
The minimum size is 2.

void (*pNtfReader) (pPIP, | The reader notification function that will be called
unsigned) every time something is delivered in the pipe. The
first parameter of the function contains a pointer
to the pipe object and the second parameter is the
number of blocks in the pipe available for reading.

void (*pNtfWriter) (pPIP, | The writer notification function that will be called
unsigned) every time something is read from the pipe. The
first parameter of the function contains a pointer
to the pipe object and the second parameter is the
space available in the pipe. (Number of blocks that
can be written until it is full)

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 145

Q=Kernel Reference Guide

Error conditions

Description

Error

gqERR_PIP_ISR The function is called from an ISR.
qERR_PIP_BLOCK_SIZE The blocks size is incorrect.
gERR_PIP_NBR_BLOCKS The number of blocks is incorrect

gERR_PIP_NAME_IN_USE The name is already in use for another object

gqERR_PIP_MEMORY There is no memory available to handle the
request.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 146

Q=Kernel Reference Guide

122. gPipEntries

unsigned gPipEntries(// returns number of block ..
pPIP pPip); // .. currently in the pipe

No preemption

Description

This function returns the number of entries in the pipe.

Parameters and return value

Parameter Description

Returns unsigned The number of entries in the pipe. If the pipe is
empty it returns O.

pPIP pPip The pipe object to get the information from.

Error conditions

Description
Error

qERR_PIP_ID The object is not a pipe object, has not been
created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 147

Q=Kernel Reference Guide

123. gPipFreeBlocks

unsigned gPipFreeBlocks(// returns free number of ..
pPIP pPip); // .. blocks in the pipe

No preemption

Description

This function returns the free number of blocks that fit in the pipe.

Parameters and return value

Parameter Description
Returns unsigned The free number of blocks in the pipe.
pPIP pPip The pipe object to get the information from.

Error conditions

Description
Error

gqERR_PIP_ID The object is not a pipe object, has not been
created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 148

Q=Kernel Reference Guide

124. gPipGet

unsigned gPiIpGet(// returns number of elements read
pPIP pPip, // The pipe to read from
void *pBuffer, // A pointer to the data
unsigned NbrBlocks);// Size of the buffer in blocks

No preemption

Description

This function reads information from a pipe. It reads never more than the specified
number of blocks to prevent overflow. The function returns the number of blocks
read or zero when there is no information in the pipe.

The buffer is specified as void but it is the developer’s responsibility to define the
correct data type. This function does not call the notification writer and is not
protected by a critical section. It is the developer’s responsibility to protect the
integrity of the data. This function is added as convenient way to read data from
pipes without synchronization overhead. Use gPipRead()for synchronized reading
from a pipe.

Parameters and return value

Parameter Description

Returns unsigned The number of elements read.

pPIP pPip The pipe object to read from.

void *pBuffer The buffer to read the information in. The

developer must specify the correct buffer type. If
the BlockSize is a multiply of the integer size the
buffer MUST be integer aligned.

unsigned NbrBlocks The number of blocks that the buffer can contain.

Error conditions

Description

Error

gqERR_PIP_ID The object is not a pipe object, has not been
created or points to no object at all.

gERR_NBR_BLOCKS Number of blocks specified as O

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 149

Q=Kernel Reference Guide

125. gPipGetBytFast

bool gPipGetBytFast(// returns true if byte is read
pPIP pPip, // The pipe to read from
uintl6é_t *pBuffer); // A pointer to the data

No preemption

Description

This function reads a byte from a pipe without parameter checking. The function
returns true if a byte was read and false when there is no information in the pipe.

It is the developer’s responsibility to check that the pipe was created for bytes.

This function does not call the notification writer and is not protected by a critical
section. It is the developer’s responsibility to protect the integrity of the data. This
function is added as convenient way to read data from pipes without
synchronization overhead. Use gPipRead()for synchronized reading from a pipe.

Parameters and return value

Parameter Description

Returns unsigned The number of elements read.

pPIP pPip The pipe object to read from.

uint8_t *pBuffer The buffer to read the information in.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 150

Q=Kernel Reference Guide

126. gPipGetFast

unsigned gPipGetFast(// returns number of elements read
pPIP pPip, // The pipe to read from
void *pBuffer, // A pointer to the data
unsigned NbrBlocks);// Size of the buffer in blocks

No preemption

Description

This function reads information from a pipe without parameter checking. It reads
never more than the specified number of blocks to prevent overflow. The function
returns the number of blocks read or zero when there is no information in the pipe.

The buffer is specified as void but it is the developer’s responsibility to define the
correct data type. This function does not call the notification writer and is not
protected by a critical section. It is the developer’s responsibility to protect the
integrity of the data. This function is added as convenient way to read data from
pipes without synchronization overhead. Use gPipRead()for synchronized reading
from a pipe.

Parameters and return value

Parameter Description

Returns unsigned The number of elements read.

pPIP pPip The pipe object to read from.

void *pBuffer The buffer to read the information in. The

developer must specify the correct buffer type. If
the BlockSize is a multiply of the integer size the
buffer MUST be integer aligned.

unsigned NbrBlocks The number of blocks that the buffer can contain.
A value of zero is allowed but the function will not
read anything.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 151

Q=Kernel Reference Guide

127. gPipGetWordFast

bool gPipGetFast(// returns true if byte i1s written
pPIP pPip, // The pipe to read from
void *pBuffer); // A pointer to the data

No preemption

Description

This function reads a 16 or 32 bit word from a pipe without parameter checking.
The function returns true if a byte was read and false when there is no information
in the pipe.

It is the developer’s responsibility to check that the pipe was created for words.

This function does not call the notification writer and is not protected by a critical
section. It is the developer’s responsibility to protect the integrity of the data. This
function is added as convenient way to read data from pipes without
synchronization overhead. Use gPipRead()for synchronized reading from a pipe.

Parameters and return value

Parameter Description

Returns unsigned The number of elements read.

pPIP pPip The pipe object to read from.

unsgined *pBuffer The buffer to read the information in. The buffer
MUST be word aligned.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 152

Q=Kernel Reference Guide

128. gPipMaxBlocks

unsigned gPipMaxBlocks(// returns maximum number of ..
pPIP pPip); // .. blocks in the pipe

No preemption

Description

This function returns the maximum number of blocks that fit in the pipe and is the
same as the parameter MaxBlocks in gPipCreate()

Parameters and return value

Parameter Description

Returns unsigned The maximum number of blocks in the pipe. This
is the same as the parameter MaxBlocks in
gPipCreate()

pPIP pPip The pipe object to get the information from.

Error conditions

Description
Error

qERR_PIP_ID The object is not a pipe object, has not been
created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 153

Q=Kernel Reference Guide

129. gPipOpen

pPIP gPipOpen(// Retuns NULL when timed-out
char *pName); // The Name of the queue

Possible preemption

Description

This function returns a pointer to an existing pipe object. If the object is created
before this function is executed the function returns immediately. If the object with
that name does not exist the thread is suspended. The timeout specifies how long
the thread is willing to wait.

The function needs memory for its operation, that’s being freed when gPipCreate()
activates the thread. It tries to allocate memory from the variable memory pool or
the heap. If this fails the system throws the error to indicate failure. To prevent
this error it is a good practice to create enough objects during initialization.

Parameters and return value

Parameter Description

Returns pPIP The function returns a pointer to the pipe object. If
the pointer is a null pointer the function timed-out.

char *pName The name of the object to open. Objects without a
name, dNO_NAME or a NULL pointer, cannot be
opened.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 154

Q=Kernel Reference Guide

Error conditions

Error Description

gERR_PIP_ISR The function is called from an ISR.

gqERR_PIP_NO_START The function is called before the kernel is started.

qERR_PIP_FBR The function is called from a fiber which is not
supported because fibers don't support blocking.

gERR_PIP_NO_NAME Pipes without a name can’t be opened.

gqERR_PIP_CRITICAL This function cannot be called from within a critical
section.

gERR_PIP_MEMORY There is no memory available to handle the open
request.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 155

Q=Kernel Reference Guide

130. gPipOpenNB

pPIP gPipOpenNB(//
char *pName); // The Name of the EventSet

No preemption

Description

This function returns a pointer to an existing pipe object. If the object is created
before this function is executed the function returns immediately. If the object with

that name does not exists the threads is suspended. The timeout specifies how
long the thread is willing to wait.

The function needs memory for its operation, that’s being freed when gPipCreate()
activates the thread. It tries to allocate memory from the variable pool or from the
heap. If this fails the system throws the error to indicate failure. To prevent this
error it is a good practice to create enough objects during initialization.

Parameters and return value

Parameter Description
Returns pPIP The function returns a pointer to the event object.
The function returns NULL if the object does not
exist.
char *pName The name of the object to open. Objects without a
name, qNO_NAME or a NULL pointer, cannot be
opened.

Error conditions

Error Description
gERR_PIP_ISR The function is called from an ISR.
gERR_PIP_NO_NAME Pipes without a name can’t be opened.
gqERR_PIP_MEMORY There is no memory available to handle the open
request.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 156

Q=Kernel Reference Guide

131. gPipOpenTO

pPIP gPipOpenTO(// Retuns NULL when timed-out
char *pName, // The Name of the object
Iint32_t TimeOut); // The timeout

Possible preemption

Description

This function returns a pointer to an existing object. If the object is created before
this function is executed the function returns immediately. If the object with that
name does not exists the threads is suspended. The timeout specifies how long the
thread is willing to wait.

The function needs memory for its operation, that’s being freed when gPipCreate()
activates the thread. It tries to allocate memory from the variable pool or from the
heap. If this fails the system throws the error to indicate failure. To prevent this
error it is a good practice to create enough objects during initialization.

Parameters and return value

Parameter Description

Returns pPIP The function returns a pointer to the pipe object. If
the pointer is null the function timed-out.

char *pName The name of the object to open. Objects without a
name, dNO_NAME or a NULL pointer, cannot be
opened.

int32_t TimeOut A positive timeout value specifies a short wait-time

in cycles. We advise to use the macros qUSEC()
and gMSEC() so the value is independent of the
system clock. The minimum is 1 pSecond.

A negative value specifies the real-time wait time
in seconds. The macro’s qSEC() and gDTM() are
available for specifying the wait-time in seconds
and for specific times based on year, month, day,
hour, minute and second.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 157

Q=Kernel Reference Guide

Error conditions

Error Description

gERR_PIP_ISR The function is called from an ISR.

gqERR_PIP_NO_START The function is called before Q=Kernel is started.

gqERR_PIP_NO_NAME Objects without a name can’t be opened.

gERR_PIP_NO_RTCC The specified TimeOut requires a RTCC which is
not available. (QRTCC=0)

gqERR_PIP_NO_TIMER The specified TimeOut requires a timer which is
not available. (qTIMER=0)

gqERR_PIP_TIMEOUT The specified TimeOut is smaller than 1 pSecond.

gqERR_PIP_CRITICAL This function cannot be called from within a critical
section.

gERR_PIP_MEMORY There is no memory available to handle the open
request.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 158

Q=Kernel Reference Guide

132. gPipPut

unsigned gPipPut(// returns nbr of elements written
pPIP pPip, // The pipe to write into
void *pBuffer, // A pointer to the data

unsigned NbrBlocks);// Size of buffer In number of ..
// .. elements

Fiber | ISR No preemption

Description

This function writes information into the pipe. The function returns the number of
blocks written. If the return value is not equal to the NbrBlocks the pipe is full and
the function returns the number of blocks written. The minimum number of
elements to write is one.

The buffer is specified as void but it is the developer’s responsibility to define the
correct data type. This function does not call the notification reader and is not
protected by a critical section. It is the developer’s responsibility to protect the
integrity of the data. This function is added as convenient way to write data to
pipes without synchronization overhead. Use qPipWrite()for synchronized writing to

a pipe.

Parameters and return value

Parameter Description

Returns unsigned The number of elements written.

pPIP pPip The pipe object to write to.

void *pBuffer The buffer that contains the information. The
developer must specify the correct buffer type.

unsigned NbrBlocks The size of the buffer in number of elements.

Error conditions

Description

Error

qERR_PIP_ID The object is not a pipe object, has not been
created or points to no object at all.

gERR_NBR_BLOCKS Number of blocks specified as O

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 159

Q=Kernel Reference Guide

133. gPipPutBytFast

bool gPipPutFast(// returns true if byte i1s written
pPIP pPip, // The pipe to write into
uint8 t *pBuffer); // A pointer to the data

Fiber | ISR No preemption

Description

This function writes a byte into the pipe without parameter checking. The function
returns true is the byte is written.

It is the developer’s responsibility to check that the pipe was created for bytes.

This function does not call the notification reader and is not protected by a critical
section. It is the developer’s responsibility to protect the integrity of the data. This
function is added as convenient way to write data to pipes without synchronization
overhead. Use gPipWrite()for synchronized writing to a pipe.

Parameters and return value

Parameter Description

Returns bool Returns true if byte successfully written
pPIP pPip The pipe object to write to.

uint8_t *pBuffer The buffer that contains the information.

Error conditions

This function does not throw errors.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 160

Q=Kernel Reference Guide

134. gPipPutWrdFast

bool gPipPutFast(// returns true if word iIs written
pPIP pPip, // The pipe to write into
unsigned *pBuffer); // A pointer to the data

Fiber | ISR No preemption

Description

This function writes a word into the pipe without parameter checking. The function
returns true is the word has been written.

It is the developer’s responsibility to check that the pipe was created for words.

The buffer is specified as void but it is the developer’s responsibility to define the
correct data type. This function does not call the notification reader and is not
protected by a critical section. It is the developer’s responsibility to protect the
integrity of the data. This function is added as convenient way to write data to
pipes without synchronization overhead. Use qPipWrite()for synchronized writing to
a pipe.

Parameters and return value

Parameter Description

Returns bool Returns true id word is successfully written.

pPIP pPip The pipe object to write to.

void *pBuffer The buffer that contains the information. The
developer must specify the correct buffer type.

Error conditions

This function does not throw errors.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 161

Q=Kernel Reference Guide

135. gPipPutFast

unsigned gPipPutFast(// returns nbr of elements written
pPIP pPip, // The pipe to write into
void *pBuffer, // A pointer to the data
unsigned NbrBlocks);// Size of buffer In number of ..
// .. elements

Fiber | ISR No preemption

Description

This function writes information into the pipe without parameter checking. The
function returns the number of blocks written. If the return value is not equal to
the NbrBlocks the pipe is full and the function returns the number of blocks written.
The minimum number of elements to write is one.

The buffer is specified as void but it is the developer’s responsibility to define the
correct data type. This function does not call the notification reader and is not
protected by a critical section. It is the developer’s responsibility to protect the
integrity of the data. This function is added as convenient way to write data to
pipes without synchronization overhead. Use qPipWrite()for synchronized writing to

a pipe.

Parameters and return value

Parameter Description

Returns unsigned The number of elements written.

pPIP pPip The pipe object to write to.

void *pBuffer The buffer that contains the information. The

developer must specify the correct buffer type.

unsigned NbrBlocks The size of the buffer in number of elements. This
MUST be one or higher.

Error conditions

This function does not throw errors.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 162

Q=Kernel Reference Guide

136. gPipRead

unsigned gPipRead(// returns number of elements read
pPIP pPip, // The pipe to read from
void *pBuffer, // A pointer to the data
unsigned NbrBlocks);// Size of the buffer in blocks

Possible preemption

Description

This function reads information from a pipe. It reads never more than the specified
number of blocks to prevent overflow. The function returns the number of blocks
read or zero when there is no information in the pipe. The buffer is specified as
void and it is the developer’s responsibility to define the correct data type.

The system will notify the writer that it has read the pipe. While the manipulation
of the buffer is in a critical section, to allow multiple readers, the notification writer
is called out-side the critical section so it can bring the calling thread in a blocking
state.

If this function is called from an ISR the system will notify the writer also in the
ISR.

Parameters and return value

Parameter Description

Returns unsigned The number of elements read.

pPIP pPip The pipe object to read from.

void *pBuffer The buffer to read the information in. The

developer must specify the correct buffer type.

unsigned NbrBlocks The number of elements that the buffer can
contain of buffer. This must be one or higher.

Error conditions

Description

Error

gqERR_PIP_ID The object is not a pipe object, has not been
created or points to no object at all.

gERR_PIP_NBR_BLOCKS The buffer size is incorrect. Must be 1 or higher.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 163

Q=Kernel Reference Guide

137.gPipReadFast

unsigned gPipReadFast(// returns number of elements read
pPIP pPip, // The pipe to read from
void *pBuffer, // A pointer to the data
unsigned NbrBlocks);// Size of the buffer in blocks

Possible preemption

Description

This function reads information from a pipe without parameter checking. It reads
never more than the specified number of blocks to prevent overflow. The function
returns the number of blocks read or zero when there is no information in the pipe.
The buffer is specified as void and it is the developer’s responsibility to define the
correct data type.

The system will notify the writer that it has read the pipe. While the manipulation
of the buffer is in a critical section, to allow multiple readers, the notification writer
is called out-side the critical section so it can bring the calling thread in a blocking
state.

If this function is called from an ISR the system will notify the writer also in the
ISR.

Parameters and return value

Parameter Description

Returns unsigned The number of elements read.

pPIP pPip The pipe object to read from.

void *pBuffer The buffer to read the information in. The

developer must specify the correct buffer type.

unsigned NbrBlocks The number of elements that the buffer can
contain of buffer. This must be one or higher.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 164

Q=Kernel Reference Guide

138. gPipWrite

unsigned gPipWrite(// returns nbr of elements written
pPIP pPip, // The pipe to write into
void *pBuffer, // A pointer to the data
unsigned NbrBlocks);// Size of buffer in number of ..
// .. blocks

Possible preemption

Description

This function writes information into the pipe. The function returns the number of
blocks written. If the return value is not equal to the NbrBlocks the pipe is full and
the function returns the number of blocks written. The buffer is specified as void
but it is the developer’s responsibility to define the correct data type.

The system will notify the reader that it has written the pipe. While the
manipulation of the buffer is in a critical section, to allow multiple writers, the
notification reader is called out-side the critical section so it can bring the calling
thread in a blocking state.

If this function is called from an ISR the system will notify the writer also in the
ISR.

Parameters and return value

Parameter Description

Returns unsigned The number of elements written.

pPIP pPip The pipe object to write to.

void *pBuffer The buffer that contains the information. The
developer must specify the correct buffer type.

unsigned NbrBlocks The size of the buffer in number of blocks.

Error conditions

Error Description

gqERR_PIP_ID The object is not a pipe object, has not been
created or points to no object at all.

gERR_PIP_NBR_BLOCKS The buffer size is incorrect. Must be 1 or higher.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 165

Q=Kernel Reference Guide

139. gPipWriteFast

unsigned gPipWriteFast(// returns nbr elements written
pPIP pPip, // The pipe to write into
void *pBuffer, // A pointer to the data
unsigned NbrBlocks); // Size of buffer in number of ..
// .. blocks

Possible preemption

Description

This function writes information into the pipe without parameter checking. The
function returns the number of blocks written. If the return value is not equal to
the NbrBlocks the pipe is full and the function returns the number of blocks written.
The buffer is specified as void but it is the developer’s responsibility to define the
correct data type.

The system will notify the reader that it has written the pipe. While the
manipulation of the buffer is in a critical section, to allow multiple writers, the
notification reader is called out-side the critical section so it can bring the calling
thread in a blocking state.

If this function is called from an ISR the system will notify the writer also in the
ISR.

Parameters and return value

Parameter Description

Returns unsigned The number of elements written.

pPIP pPip The pipe object to write to.

void *pBuffer The buffer that contains the information. The
developer must specify the correct buffer type.

unsigned NbrBlocks The size of the buffer in number of blocks.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 166

Q=Kernel Reference Guide

140. gPubClose

void gPubClose(
pPUB pPub) // The publisher to close

No preemption

Description

Closes the publisher and all subscribers and returns the resources back to the
resource pool. The system will invalidate the object so other function can’t use the
object accidentally.

Parameters and return value

Parameter Description

pPUB pPub A pointer to the object. Must be returned from the
gPubCreate() or gPubOpen() function with the
correct name.

Error conditions

Error Description
gERR_PUB_ ISR The function is called from an ISR.
gERR_PUB_ID The object is not a publisher object, has not been

created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 167

Q=Kernel

Reference Guide

141. gPubCreate

pPUB gPubCreate(
char *pName);

// The Name of the semaphore

Description

Possible preemption

Before the publish/subscribe mechanism can be used, it has to be created by
calling this function. The subscribers can open the publication and subscriber to the
publication after creation of the publication.

Parameters and return value

Parameter

Description

Returns pPUB

The function returns a pointer to the publication
object.

char *pName

The name of the publication. The name must be
unique within other publication objects or
gNO_NAME which is a null pointer. gPubOpen()
can be used to locate the object if the name is not
a null pointer.

Error conditions

Error

Description

gERR_PUB_ISR

The function is called from an ISR.

gERR_PUB_NAME_IN_USE

The name is already in use for another object

gERR_PUB_MEMORY

There is no memory available to handle the
request.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 168

Q=Kernel

Reference Guide

142. qPubOpen

pPUB gPubOpen(
char *pName);

// Retuns NULL when timed-out
// The Name of the semphore

Description

Possible preemption

This function returns a pointer to an existing Publish object. If the object is created
before this function is executed the function returns immediately. If the object with
that name does not exist the thread is suspended.

Parameters and return value

Parameter

Description

Returns pPUB

The function returns a pointer to the publish
object.

char *pName

The name of the object to open. Objects without a
name, dNO_NAME or a NULL pointer, cannot be
opened.

Error conditions

Error

Description

gERR_PUB_ISR

The function is called from an ISR.

gERR_PUB_NO_START

The function is called before Q-Kernel is started.

gERR_PUB_FBR

The function is called from a fiber which is not
supported because fibers don't support blocking.

gERR_PUB_NO_NAME

Semaphores without a name can’t be opened.

gERR_PUB_CRITICAL

This function cannot be called from within a critical
section.

gERR_PUB_MEMORY

There is no memory available to handle the open
request. All open functions return the same error.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353

page 169

Q=Kernel Reference Guide

143. gPubOpenNB

pPUB gPubOpenNB(//
char *pName); // The Name of the object

No preemption

Description

This function returns a pointer to an existing publish object.

Parameters and return value

Parameter Description

Returns pPUB The function returns a pointer to the Publish
object. The function returns NULL if the object
does not exist.

char *pName The name of the object to open. Objects without a
name, dNO_NAME or a NULL pointer, cannot be
opened.

Error conditions

Error Description
gERR_PUB_ ISR The function is called from an ISR.
gqERR_PUB_NO_NAME Object without a name can’t be opened.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 170

Q=Kernel Reference Guide

144. qPubOpenTO

pPUB gPubOpenTO(// Retuns NULL when timed-out
char *pName, // The Name of the object
Iint32_t TimeOut); // The timeout

Possible preemption

Description

This function returns a pointer to an existing Publish object. If the object is created
before this function is executed the function returns immediately. If the object with
that name does not exists the threads is suspended. The timeout specifies how
long the thread is willing to wait.

Parameters and return value

Parameter Description

Returns pPUB The function returns a pointer to the publish
object. If the pointer is null the function timed-out.

char *pName The name of the object to open. Objects without a
name, qNO_NAME or a NULL pointer, cannot be
opened.

int32_t TimeOut A positive timeout value specifies a short wait-time

in cycles. We advise to use the macros qUSEC()
and gMSEC() so the value is independent of the
system clock. The minimum is 1 pSecond.

A negative value specifies the real-time wait time
in seconds. The macro’s qSEC() and gDTM() are
available for specifying the wait-time in seconds
and for specific times based on year, month, day,
hour, minute and second.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 171

Q=Kernel Reference Guide

Error conditions

Error Description

gERR_PUB_ ISR The function is called from an ISR.

gERR_PUB_NO_START The function is called before Q=Kernel is started.

gqERR_PUB_NO_NAME Objects without a name can’t be opened.

gERR_PUB_NO_RTCC The specified TimeOut requires a RTCC which is
not available. (QRTCC=0)

gERR_PUB_NO_TIMER The specified TimeOut requires a timer which is
not available. (qTIMER=0)

gERR_PUB_TIMEOUT The specified TimeOut is smaller than 1 pSecond.

gqERR_PUB_CRITICAL This function cannot be called from within a critical
section.

gERR_PUB_MEMORY There is no memory available to handle the open
request.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 172

Q=Kernel

Reference Guide

145. qPubSubscribeFun

pPUB pPub,

void qPubSubscribeFun(

// The publisher to subscribe

void (*pFun)(void*, pMSG);

Description

No preemption

The function binds the subscriber function to the publisher. Every time a message
is published by the publisher the function is called with a NULL parameter and the

message.

Parameters and return value

Parameter

Description

pPUB pPub

A pointer to the publish object. Must be returned
from gqPubCreate() or qPubOpen() with the correct
name.

void (*pFun)(void*, pMSG)

The function that will be called by the publisher of
a message. The first parameter is always NULL by
convention and the second parameter is the
message.

Error conditions

Error

Description

gERR_PUB_ISR

The function is called from an ISR.

gERR_PUB_ID

The object is not a publish object, has not been
created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 173

Q=Kernel

Reference Guide

146. gPubSubscribePip

pPUB pPub, //
pPIP pPip);

void gqPubSubscribePip(

The publisher to subscribe

Description

No preemption

The function binds the subscriber function to a pipe. Every time a message is

published by the publisher the

message is written in the pipe.

Parameters and return value

Parameter Description

pPUB pPub A pointer to the publish object. Must be returned
from gqPubCreate() or qPubOpen() with the correct
name.

pPIP pPip The pipe that will be used to send the message.

Error conditions

Error

Description

gERR_PUB_ISR

The function is called from an ISR.

gqERR_PUB_ID The object is not a publish object, has not been
created or points to no object at all.
gqERR_PIP_ID The object is not a pipe object, has not been

created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 174

Q=Kernel

Reference Guide

147.gPubSubscribeQue

pPUB pPub, //
PQUE pQue);

void qPubSubscribeQue(

The publisher to subscribe

Description

No preemption

The function binds the subscriber function to a queue. Every time a message is

published by the publisher the

message is sent to the queue.

Parameters and return value

Parameter Description

pPUB pPub A pointer to the publish object. Must be returned
from qPubCreate() or qPubOpen() with the correct
name.

pQUE pQue The pipe that will be used to send the message.

Error conditions

Error

Description

gERR_PUB_ISR

The function is called from an ISR.

gqERR_PUB_ID The object is not a publish object, has not been
created or points to no object at all.
gqERR_QUE_ID The object is not a queue object, has not been

created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 175

Q=Kernel Reference Guide

148. gPwrPermitldle
void gPwrPermitldle()

Description

This function allows the kernel to switch the system into idle mode.
Parameters and return value

None

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 176

Q=Kernel Reference Guide

149. gPwrPermitSleep

void gPwrPermitSleep()

Description

This function allows the kernel to switch the system into sleep mode.
Parameters and return value

None

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 177

Q=Kernel Reference Guide

150. gPwrPreventlidle

void gPwrPreventldle()

Description

This function prevents the kernel to switch the system into idle mode.
Parameters and return value

None

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 178

Q=Kernel Reference Guide

151. gPwrPreventSleep

void gPwrPreventSleep()

Description

This function prevents the kernel to switch the system into sleep mode.
Parameters and return value

None

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 179

Q=Kernel

Reference Guide

152. gQueClose

void gQueClose(
PQUE pQue);

// The queue to close

Description

No preemption

Closes a queue and returns the resources back to the resource pool. It is the
developer responsibility to make sure that the queue is not used by other threads
or fibers. The function will test if any thread is waiting on the queue but it does not
detect if other threads are using this queue object. The system will invalidate the
object so other function can’t use the object accidentally.

Parameters and return value

Parameter

Description

PQUE pQue

A pointer to the object. Must be returned from the

qQueCreate() or qQueOpen() function with the
correct name.

Error conditions

Error

Description

gERR_QUE_ISR

The function is called from an ISR.

gERR_QUE_ID

The object is not a queue object, has not been
created or points to no object at all.

gERR_QUE_IN_USE

Other thread(s) are waiting for the queue. The
system can’t detect of other threads are using the
queue.

The developer is responsible for checking if the queue object is
not used anymore.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353 page 180

Q=Kernel

Reference Guide

153. gQueCreate

pPQUE gQueCreate(
char *pName,
uintl6é_t Size);

// The Name of the queue
// Nbr of message In queue

Description

Possible preemption

Before a queue can be used, it has to be created by calling this function. If there is
an open request for the queue with this name that thread will be readied, which
creates a possible preemption. Multiple threads can wait for the object to be
created and all threads will be readied. The function needs memory to create the
object. It tries to allocate memory from the variable memory pool or the heap.

Parameters and return value

Parameter

Description

Returns pQUE

The function returns a pointer to the queue object.

char *pName

The name of the queue. The name must be unique
within other queue objects or gNO_NAME which is
a null pointer. qQueOpen() can be used to locate
the object if the name is not a null pointer.

unsigned Size

The number of messages in the queue. The
system will allocate an array of message of this
size. The minimum size is 1.

Error conditions

Error

Description

gERR_QUE_ISR

The function is called from an ISR.

gERR_QUE_NAME_IN_USE

The name is already in use for another object

gERR_QUE_SIZE

The size of the queue is incorrect.

gERR_QUE_MEMORY

There is no memory available to handle the
request.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353 page 181

Q=Kernel Reference Guide

154. gQueOpen

PQUE gQueOpen(// Retuns NULL when timed-out
char *pName); // The Name of the queue

Thread | Critical Section | Fiber Possible preemption

Description

This function returns a pointer to an existing queue object. If the object is created
before this function is executed the function returns immediately. If the object with
that name does not exist the thread is suspended. The timeout specifies how long
the thread is willing to wait.

The function needs memory for its operation, that’'s being freed when gQueCreate()
activates the thread. It tries to allocate memory from the variable memory pool or
the heap. If this fails the system throws the error to indicate failure. To prevent
this error it is a good practice to create enough objects during initialization.

Parameters and return value

Parameter Description
Returns pQUE The function returns a pointer to the queue object.
If the pointer is a null pointer the function timed-
out.
char *pName The name of the object to open. Objects without a
name, qNO_NAME or a NULL pointer, cannot be
opened.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 182

Q=Kernel Reference Guide

Error conditions

Error Description

gERR_QUE_ISR The function is called from an ISR.

gERR_QUE_NO_START The function is called before the kernel is started.

gqERR_QUE_FBR The function is called from a fiber which is not
supported because fibers don't support blocking.

gERR_QUE_NO_NAME Message queues without a name can’t be opened.

gERR_QUE_CRITICAL This function cannot be called from within a critical
section.

gERR_QUE_MEMORY There is no memory available to handle the open
request.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 183

Q=Kernel Reference Guide

155. qQueOpenNB

pPQUE gQueOpenNB(//
char *pName); // The Name of the EventSet

No preemption

Description

This function returns a pointer to an existing queue object.

Parameters and return value

Parameter Description
Returns pQUE The function returns a pointer to the queue object.
The function returns NULL if the object does not
exist.
char *pName The name of the object to open. Objects without a
name, dNO_NAME or a NULL pointer, cannot be
opened.

Error conditions

Error Description
gERR_QUE_ISR The function is called from an ISR.
gERR_QUE_NO_NAME Queues without a name can’t be opened.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 184

Q=Kernel Reference Guide

156. qQueOpenTO

pPQUE gQueOpenTO(// Retuns NULL when timed-out
char *pName, // The Name of the object
Iint32_t TimeOut); // The timeout

Possible preemption

Description

This function returns a pointer to an existing object. If the object is created before
this function is executed the function returns immediately. If the object with that
name does not exists the threads is suspended. The timeout specifies how long the
thread is willing to wait.

The function needs memory for its operation, that’'s being freed when gQueCreate()
activates the thread. It tries to allocate memory from the variable pool or from the
heap. If this fails the system throws the error to indicate failure. To prevent this
error it is a good practice to create enough objects during initialization.

Parameters and return value

Parameter Description

Returns pQUE The function returns a pointer to the queue object.
If the pointer is null the function timed-out.

char *pName The name of the object to open. Objects without a
name, dNO_NAME or a NULL pointer, cannot be
opened.

int32_t TimeOut A positive timeout value specifies a short wait-time

in cycles. We advise to use the macros qUSEC()
and gMSEC() so the value is independent of the
system clock. The minimum is 1 pSecond.

A negative value specifies the real-time wait time
in seconds. The macro’s qSEC() and gDTM() are
available for specifying the wait-time in seconds
and for specific times based on year, month, day,
hour, minute and second.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 185

Q=Kernel Reference Guide

Error conditions

Error Description

gERR_QUE_ISR The function is called from an ISR.

gERR_QUE_NO_START The function is called before Q=Kernel is started.

gERR_QUE_NO_NAME Objects without a name can’t be opened.

gERR_QUE_NO_RTCC The specified TimeOut requires a RTCC which is
not available. (QRTCC=0)

gERR_QUE_NO_TIMER The specified TimeOut requires a timer which is
not available. (qTIMER=0)

gERR_QUE_TIMEOUT The specified TimeOut is smaller than 1 pSecond.

gERR_QUE_CRITICAL This function cannot be called from within a critical
section.

gERR_QUE_MEMORY There is no memory available to handle the open
request.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 186

Q=Kernel Reference Guide

157. gRanGet
uint32_t gRanGet()

No preemption

Description

This function returns a random value based on George Marsaglia (multiply with
carry) algorithm random number generation. It's a simple algorithms that
nevertheless produce high quality output. The function will notify the system by
calling gRanNtfSeed() the first time the function is used. After that the function
operates on its own. See the user guide for more information.

Parameters and return value

Parameter Description

Retrun uint32_t New random value

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 187

Q=Kernel Reference Guide

158. gRanNtfSeed

void gRanNtfSeed(
uint32_t X, // Seed number X
uint32_t Y); // Seed number Y

Description

If the function gRanGet() will be used the developer has to implement this
function. The default function throws an error (QERR_NTF_SEED). Please see the
user guide for more information

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 188

Q=Kernel Reference Guide

159. gRtcAlarm
void gRtcAlarm(

uint32_t DatTim, // date-time iIn internal format
void (*pFbr)(void *p));// The function to call
void (*pFbr)Q):; // The parameter

No preemption

Description

This function sets an alarm and will call the function as a fiber when the time

expires. If the specified time has already been reached, the function is called
immediately.

Parameters and return value

Parameter Description

unsigned DatTim The DatTim in internal format

void (*pFbr)() The function to call after the time expires

void *pParam The parameter for the function. This allows to
share the function for several timers

Error conditions

Error Description
gERR_RTC_ISR The function is called from an ISR.
gqERR_RTC_FUNCTION No function specified.

gERR_RTC_ 1 1 2010 The date time is before 1/1/2010

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 189

Q=Kernel Reference Guide

160. gRtcGetDatTim
uint32_t gRtcGetDatTim(); //

Possible preemption

Description

This function returns the current data time in internal format. The function will
return O if the date time has not been set.

Parameters and return value

Parameter Description

Returns uint32_t Date time in internal format.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 190

Q=Kernel Reference Guide

161. gRtcGetUptime
uint32_t gRtcGetUptime(); //

Description

This function returns the uptime.

Parameters and return value

Parameter Description

Returns uint32_t The uptime in seconds

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 191

Q=Kernel Reference Guide

162. gRtcSetDatTim

void gRtcSetDatTim(
uint32_t DatTim); //

Possible preemption

Description

This function sets the date time. This function could preempt if the date time is set
back.

Parameters and return value

Parameter Description

uint32_t DatTim The correct date time in internal format

Error conditions

Error Description
gERR_RTC_ISR The function is called in an ISR
gERR_RTC_NO_START The system is not started
gERR_RTC_FBR The function is called from a fiber
gERR_RTC_CRITICAL The function is called from a critical section
gERR_RTC_1 1 2010 The specified date time is before 1/1/2010

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 192

Q=Kernel Reference Guide

163. gSemAcquire

unsigned gSemAcquire(
pPSEM pSem) ; // Semaphore to acquire the permit

Possible preemption

Description

Acquires a permit, if one is available and returns immediately, with the value of 1,
reducing the number of available permits by one. If no permit is available then the
current thread will be preempted. The functions returns O if the specified waiting
time elapses. A value of 1 will be returned if the permit is acquired.

There is also a non-blocking version of this function. The non-blocking function is
faster. Use this function if the size of the code is a concern and this function is
already used in another place in the application because using both functions
doubles the flash footprint.

Parameters and return value

Parameter Description
Returns unsigned Returns O if timed out and 1 if permit is granted
pPSEM pSem A pointer to the semaphore object. Must be

returned from gSemCreate() or gSemOpen() with
the correct name.

Error conditions

Error Description

gERR_SEM_ISR The function is called from an ISR.

gERR_SEM_NO_START The function is called before Q=Kernel is started.

qERR_SEM_FBR The function is called from a fiber which is not
supported because fibers don't support blocking.

gERR_SEM_NO_NAME Semaphores without a name can’t be opened.

gERR_SEM_CRITICAL This function cannot be called from within a critical
section.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 193

Q=Kernel Reference Guide

164. gSemAcquireFast

unsigned gSemAcquireFast(
pPSEM pSem) ; // Semaphore to acquire the permit

Possible preemption

Description

Acquires a permit, if one is available and returns immediately, with the value of 1,
reducing the number of available permits by one. If no permit is available then the
current thread will be preempted. The functions returns O if the specified waiting
time elapses. A value of 1 will be returned if the permit is acquired.

There is also a non-blocking version of this function. The non-blocking function is
faster. Use this function if the size of the code is a concern and this function is
already used in another place in the application because using both functions
doubles the flash footprint.

This function operates without parameter checking.

Parameters and return value

Parameter Description
Returns unsigned Returns O if timed out and 1 if permit is granted
pPSEM pSem A pointer to the semaphore object. Must be

returned from gSemcCreate() or gSemOpen() with
the correct name.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 194

Q=Kernel

Reference Guide

165. gSemAcquireNB

pSEM pSem) ;

unsigned gSemAcquireNB(

// Semaphore to acquire the permit

Description

No preemption

Acquires a permit and returns immediately.

This is the faster non-blocking version of gSemAcquire(). Use qSemAcquire() if the
size of the code is a concern and qSemAcquire() is already used in another place in
the application because using both functions doubles the flash footprint.

Parameters and return

value

Parameter

Description

Returns unsigned

Returns O if timed out and 1 if permit is granted

PSEM pSem

A pointer to the semaphore object. Must be
returned from gSemcCreate() or gSemOpen() with
the correct name.

Error conditions

Error

Description

gERR_SEM_ISR

The function is called from an ISR.

gERR_SEM_NO_START

The function is called before Q-Kernel is started.

gERR_SEM_ID

The object is not a semaphore object, has not
been created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 195

Q=Kernel Reference Guide

166. gSemAcquireTO

unsigned gSemAcquireTO(
pSEM pSem, // Semaphore to acquire the permit
int32_t TimeOut); // The timeout

Possible preemption

Description

Acquires a permit, if one is available and returns immediately, with the value of 1,
reducing the number of available permits by one. If no permit is available then the
current thread will be preempted. The functions returns O if the specified waiting
time elapses. A value of 1 will be returned if the permit is acquired.

There is also a non-blocking version of this function. The non-blocking function is
faster. Use this function if the size of the code is a concern and this function is
already used in another place in the application because using both functions
doubles the flash footprint.

Parameters and return value

Parameter Description
Returns unsigned Returns O if timed out and 1 if permit is granted
pPSEM pSem A pointer to the semaphore object. Must be

returned from gSemCreate() or gSemOpen() with
the correct name.

int32_t TimeOut A positive timeout value specifies a short wait-time
in cycles. We advise to use the macros qUSEC()
and gMSEC() so the value is independent of the
system clock. The minimum is 1 pSecond.

A negative value specifies the real-time wait time
in seconds. The macro’s qSEC() and gDTM() are
available for specifying the wait-time in seconds
and for specific times based on year, month, day,
hour, minute and second.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 196

Q=Kernel

Reference Guide

Error conditions

Error

Description

gERR_SEM_ISR

The function is called from an ISR.

QERR_SEM_NO_START

The function is called before Q=Kernel is started.

gERR_SEM_FBR

The function is called from a fiber which is not
supported because fibers don't support blocking.

gERR_SEM_NO_NAME

Semaphores without a name can’t be opened.

gERR_SEM_CRITICAL

This function cannot be called from within a critical
section.

gERR_SEM_NO_RTCC

The specified TimeOut requires a RTCC which is
not available. (QRTCC=0)

gERR_SEM_NO_TIMER

The specified TimeOut requires a timer which is
not available. (qTIMER=0)

qERR_SEM_TIMEOUT

The specified TimeOut is smaller than 1 pSecond.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353 page 197

Q=Kernel Reference Guide

167.gSemcClose

void gSemClose(
pPSEM pSem) ; // The semphore to close EventSet

No preemption

Description

Closes semaphore and returns the resources back to the resource pool. It is the
developer responsibility to make sure that the semaphore is not used by other
threads or fibers. The function will test if any thread is waiting on the semaphore
but it does not detect if other thread or fibers are using this semaphore object. The
system will invalidate the object so other function can’t use the object accidentally.

Parameters and return value

Parameter Description

pPSEM pSem A pointer to the object. Must be returned from the
gSemCreate() or gSemOpen() function with the
correct name.

Error conditions

Error Description
gERR_SEM_ ISR The function is called from an ISR.
gqERR_SEM_ID The object is not a semaphore object, has not

been created or points to no object at all.

gqERR_SEM_IN_USE The semaphore object is in use by other threads or
fibers. More specific other threads are waiting for
it. The system can’t detect of other thread or fibers
are using this semaphore.

The developer is responsible for checking if the semaphore object
is not used anymore.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 198

Q=Kernel Reference Guide

168. gSemCreate

pSEM gSemCreate(
char *pName, // The Name of the semaphore
unsigned Permits); // The number of initial permits

Possible preemption

Description

Before a semaphore can be used, it has to be created by calling this function. The
creating thread or fiber specifies the initial number of permits and a name for the
semaphore object. If there is an open request for the semaphore with this name
that thread will be readied, which creates a possible preemption. Multiple threads
can wait for the object to be created and all threads will be readied.

The function needs memory to create the object. It tries to allocate memory from
the variable pool or the heap. If this fails the system throws the error to indicate
failure. To prevent this error it is a good practice to create enough objects during
initialization.

Parameters and return value

Parameter Description

Returns pSEM The function returns a pointer to the semaphore
object.

char *pName The name of the semaphore. The name must be

unique within other semaphore objects or
gNO_NAME which is a null pointer. qSemOpen()
can be used to locate the object if the name is not
a null pointer.

unsigned Permits The number of initial permits available. Maximum
is gMAX_PERMITS. This value is specified in
gKernel.h

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 199

Q=Kernel Reference Guide

Error conditions

Error Description

gERR_SEM_ ISR The function is called from an ISR.

gERR_SEM_OVERFLOW The number of permits is greater than the
maximum.

gERR_SEM_NAME_IN_USE | The name is already in use for another object

gERR_SEM_MEMORY There is no memory available to handle the
request.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 200

Q=Kernel Reference Guide

169. gSemOpen

gqtSem gSemOpen(// Retuns NULL when timed-out
char *pName); // The Name of the semphore

Possible preemption

Description

This function returns a pointer to an existing semaphore object. If the object is
created before this function is executed the function returns immediately. If the
object with that name does not exist the thread is suspended. The timeout
specifies how long the thread is willing to wait.

The function needs memory for its operation, that's being freed when
gSemcCreate() activates the thread. It tries to allocate memory from the variable
pool or from the heap. If this fails the system throws the error to indicate failure.

To prevent this error it is a good practice to create enough objects during
initialization.

Parameters and return value

Parameter Description
Returns pSEM The function returns a pointer to the semaphore
object. If the pointer is a null pointer the function
timed-out.
char *pName The name of the object to open. Objects without a
name, qNO_NAME or a NULL pointer, cannot be
opened.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 201

Q=Kernel Reference Guide

Error conditions

Error Description

gERR_SEM_ ISR The function is called from an ISR.

gERR_SEM_NO_START The function is called before Q=Kernel is started.

qERR_SEM_FBR The function is called from a fiber which is not
supported because fibers don't support blocking.

gERR_SEM_NO_NAME Semaphores without a name can’t be opened.

gqERR_SEM_CRITICAL This function cannot be called from within a critical
section.

gERR_SEM_MEMORY There is no memory available to handle the open

request. All open functions return the same error.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 202

Q=Kernel Reference Guide

170.9gSemOpenNB

pPSEM gSemOpenNB(//
char *pName); // The Name of the EventSet

No preemption

Description

This function returns a pointer to an existing semaphore object.

Parameters and return value

Parameter Description

Returns pSEM The function returns a pointer to the semaphore
object. The function returns NULL if the object
does not exist.

char *pName The name of the object to open. Objects without a
name, dNO_NAME or a NULL pointer, cannot be
opened.

Error conditions

Error Description
gERR_SEM_ ISR The function is called from an ISR.
gqERR_SEM_NO_NAME Semaphores without a name can’t be opened.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 203

Q=Kernel Reference Guide

171.9SemOpenTO

pPSEM gSemOpenTO(// Retuns NULL when timed-out
char *pName, // The Name of the object
Iint32_t TimeOut); // The timeout

Possible preemption

Description

This function returns a pointer to an existing object. If the object is created before
this function is executed the function returns immediately. If the object with that
name does not exists the threads is suspended. The timeout specifies how long the
thread is willing to wait.

The function needs memory for its operation, that's being freed when
gSemcCreate() activates the thread. It tries to allocate memory from the variable
pool or from the heap. If this fails the system throws the error to indicate failure.
To prevent this error it is a good practice to create enough objects during
initialization.

Parameters and return value

Parameter Description

Returns pSEM The function returns a pointer to the semaphore
object. If the pointer is null the function timed-out.

char *pName The name of the object to open. Objects without a
name, dNO_NAME or a NULL pointer, cannot be
opened.

int32_t TimeOut A positive timeout value specifies a short wait-time

in cycles. We advise to use the macros qUSEC()
and gMSEC() so the value is independent of the
system clock. The minimum is 1 pSecond.

A negative value specifies the real-time wait time
in seconds. The macro’s qSEC() and gDTM() are
available for specifying the wait-time in seconds
and for specific times based on year, month, day,
hour, minute and second.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 204

Q=Kernel Reference Guide

Error conditions

Error Description

gERR_SEM_ ISR The function is called from an ISR.

gERR_SEM_NO_START The function is called before Q=Kernel is started.

gqERR_SEM_NO_NAME Objects without a name can’t be opened.

gERR_SEM_NO_RTCC The specified TimeOut requires a RTCC which is
not available. (QRTCC=0)

gERR_SEM_NO_TIMER The specified TimeOut requires a timer which is
not available. (qTIMER=0)

gqERR_SEM_TIMEOUT The specified TimeOut is smaller than 1 pSecond.

gqERR_SEM_CRITICAL This function cannot be called from within a critical
section.

gERR_SEM_MEMORY There is no memory available to handle the open
request.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 205

Q=Kernel

Reference Guide

172.gSemPermits

pPSEM pSem) ;

unsigned gSemPermits(
// The semaphore to get permits for

Description

No preemption

The function returns the number of permits available in this semaphore. This
method is typically used for debugging and testing purposes.

Parameters and return

value

Parameter

Description

Returns unsigned

The function
available.

returns the number of permits

PSEM pSem

A pointer to the semaphore object. Must be
returned from gSemCreate() or gSemOpen() with
the correct name.

Error conditions

Error

Description

gERR_SEM_ISR

The function is called from an ISR.

gERR_SEM_ID

The object is not a semaphore object, has not
been created or points to no object at all.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353

page 206

Q=Kernel Reference Guide

173.gSemRelease

void gSemRelease(

pPSEM pSem) ; // The semaphore that contains
// the permit to release

Possible preemption

Description

The function releases a permit and increasing the number of available permits by
one. If any threads are trying to acquire a permit, then the one with highest
priority is selected and given the permit that was just released. That thread is
enabled for scheduling purposes.

There is no requirement that a thread or fiber that releases a permit must have

acquired that permit. Correct usage of a semaphore is established by programming
convention in the application.

Permits can be released from Interrupt Service Routines (ISR)

Parameters and return value

Parameter Description

pPSEM pSem A pointer to the semaphore object. Must be
returned from gSemcCreate() or gSemOpen() with
the correct name.

Error conditions

Error Description

gqERR_SEM_ID The object is not a semaphore object, has not
been created or points to no object at all.

gERR_SEM_OVERFLOW The semaphore count is beyond 2°15-1 for 16 bit
systems and 27°31-1 for 32 bit versions.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 207

Q=Kernel Reference Guide

174.gSemReleaseFast

void gSemReleaseFast(
pPSEM pSem) ; // The semaphore that contains
// the permit to release

Possible preemption

Description

The function releases a permit and increasing the number of available permits by
one. If any threads are trying to acquire a permit, then the one with highest
priority is selected and given the permit that was just released. That thread is
enabled for scheduling purposes.

There is no requirement that a thread or fiber that releases a permit must have
acquired that permit. Correct usage of a semaphore is established by programming
convention in the application.

This function operates without parameter checking.

Permits can be released from Interrupt Service Routines (ISR)

Parameters and return value

Parameter Description

pPSEM pSem A pointer to the semaphore object. Must be
returned from gSemcCreate() or gSemOpen() with
the correct name.

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 208

Q=Kernel Reference Guide

175.gThrClose

void gThrClose(
pTCB pTcb) // The thread to close
Before - . . .
Start Thread | Critical Section | Fiber No preemption

Description

Closes a thread and returns the resources back to the resource pool. It is the
developer responsibility to make sure that the thread does not wait for any object
and is not referenced by other threads. This function is automatically called if a
thread ends it function.

The function executes the following steps:
e De-allocates the TCB and the thread stack

¢ Remove the TCB from the Ready or wait list

It’s the developer responsible to check that the thread is not used.

Parameters and return value

Parameter Description

pTCB pTcb A pointer to the thread control block. Must be
returned from qThrCreate() or from gThrOpen()
with the correct name. Use the function
qThrCurrent() to provide the thread control block
of the current thread.

Error conditions

Error Description
gERR_THR_ISR The function is called from an ISR.
qERR_THR_ID The thread control block is not a TCB, has not

been created or points to no TCB at all.

gqERR_THR_IN_USE The event object is in use by other threads. More
specific other thread(s) are waiting for it. The
system can’t detect if other thread are using this
event.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 209

Q=Kernel

Reference Guide

176.gThrCreate

pTCB qThrCreate(

char *pName,

// The

void(*pFun)(void *pPar), // The

void *pPar,
unsigned StackSize,
uint8_t Priority);

// The
// The
// The

Name of the thread
thread function itself
parameter data

size of the stack
priority

Description

No preemption

This function will create a thread to be management by Q-Kernel. When the
system is not yet started it will create the memory structures and other control
information. When Q=Kernel is running it will do the same but it will make the
thread ready to run and the thread will run if it becomes the highest priority
thread. If other threads are waiting for this thread to be created those thread(s)
are made run-able. The function executes the following steps:

Allocates the TCB and the thread stack

Populate the TCB

Add the TCB to the ready list

Reschedules if this thread becomes the highest priority thread

Returns the pointer to the TCB

There is also a function available to create threads in a suspended mode. See

qThr

CreateSuspended().

© 2008-2013

Quasarsoft Ltd. gKernelRefGuide V6.0-3353

page 210

Q=Kernel

Reference Guide

Parameters

Parameter

Description

Returns pTCB

The function returns a pointer to the Thread
Control Block of the created thread.

char *pName

The name of the thread. The name must be unique
within other thread objects or qNO_NAME which is
a null pointer. qThrOpen() can be used to locate
the Thread if the name is not a null pointer.

void(*pFun)(void *pPar)

The function that contains the code of the thread.

void *pPar

The parameter that is provided to the thread. This
can be a pointer or any other type that fits in the
pointer.

unsigned StackSize

The size of the stack. This memory is allocated
from variable memory.

uint8_t Priority

The priority from 1 to 250. The higher the number
the higher the priority.

Error conditions

Error

Description

gERR_THR_ISR

The function is called from an ISR.

gERR_THR_STACK

The stack size is smaller then 16 bytes.

gERR_THR_PRIO

The thread priority is O or greater than 250

gERR_THR_NAME_IN_USE

A thread with that name already exists

gERR_THR_MEMORY

There is no memory available to handle the
request.

The developer must give every thread a unique name or no name at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 211

Q=Kernel Reference Guide

177.qThrCreateEds (Only 16bit PIC’s with EDS)

pT

CB gThrCreateEds(

char *pName, // The Name of the thread
void(*pFun) (void *pPar), // The thread function itself
void *pPar, // The parameter data
unsigned StackSize, // The size of the stack
uint8 _t Priority, // The priority

__eds___ unsigned* Stack);// Pointer to the stack

No preemption

Description

This

function will create a thread to be management by Q-Kernel. When the

system is not yet started it will create the memory structures and other control
information. When Q=Kernel is running it will do the same but it will make the
thread ready to run and the thread will run if it becomes the highest priority
thread. If other threads are waiting for this thread to be created those thread(s)
are made run-able. The function executes the following steps:

Ther
qEdt

Allocates the TCB and the thread stack in EDS memory
Populate the TCB

Add the TCB to the ready list

Reschedules if this thread becomes the highest priority thread
Returns the pointer to the TCB

e is also a function available to create threads in a suspended mode. See
ThrCreateSuspended().

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 212

Q=Kernel

Reference Guide

Parameters

Parameter

Description

Returns pTCB

The function returns a pointer to the Thread
Control Block of the created thread.

char *pName

The name of the thread. The name must be unique
within other thread objects or qNO_NAME which is
a null pointer. qThrOpen() can be used to locate
the Thread if the name is not a null pointer.

void(*pFun)(void *pPar)

The function that contains the code of the thread.

void *pPar

The parameter that is provided to the thread. This
can be a pointer or any other type that fits in the
pointer.

unsigned StackSize

The size of the stack. This memory is allocated
from variable memory.

uint8_t Priority

The priority from 1 to 250. The higher the number
the higher the priority.

___eds___ unsigned* Stack

A pointer to the stack. Its the developer
responsibility to manage the EDS memory and
define the correct stack

Error conditions

Error

Description

gERR_THR_ISR

The function is called from an ISR.

gERR_THR_STACK

The stack size is smaller then 16 bytes.

gERR_THR_PRIO

The thread priority is O or greater than 250

gERR_THR_NAME_IN_USE

A thread with that name already exists

gERR_THR_MEMORY

There is no memory available to handle the
request.

gERR_THR_NO_SHARED_S
TACK_SIZE

The stack is larger than the specified shared stack
size.

gERR_THR_NO_EDS

There is no EDS memory available

The developer must give every thread a unique name or no name at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 213

Q=Kernel Reference Guide

178.gThrCreateSuspended

pTCB qThrCreate(
char *pName, // The Name of the thread
void(*pFun)(void *pPar), // The thread function itself
void *pPar, // The parameter data
unsigned StackSize, // The size of the stack
uint8 t Priority); // The priority

No preemption

Description

This function will create a thread suspended to be management by Q-Kernel.
When the system is not yet started it will create the memory structures and other
control information. The function executes the following steps:

e Allocates the TCB and the thread stack
e Populate the TCB

e Add the TCB to the hibernate list

e Returns the pointer to the TCB

Parameters
Parameter Description
Returns pTCB The function returns a pointer to the Thread
Control Block of the created thread.
char *pName The name of the thread. The name must be unique
within other thread objects or gNO_NAME which is
a null pointer. qThrOpen() can be used to locate
the Thread if the name is not a null pointer.
void(*pFun)(void *pPar) The function that contains the code of the thread.
void *pPar The parameter that is provided to the thread. This
can be a pointer or any other type that fits in the
pointer.
unsigned StackSize The size of the stack. This memory is allocated
from variable memory.
uint8_t Priority The priority from 1 to 250. The higher the number
the higher the priority.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 214

Q=Kernel Reference Guide

Error conditions

Error Description
gERR_THR_ISR The function is called from an ISR.
gERR_THR_STACK The stack size is smaller then 16 bytes.
gqERR_THR_PRIO The thread priority is O or greater than 250

gERR_THR_NAME_IN_USE A thread with that name already exists

gERR_THR_MEMORY There is no memory available to handle the
request.

The developer must give every thread a unique name or no name at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 215

Q=Kernel Reference Guide

179. qThrCreateSuspendedEds (PIC’s with EDS)

pTCB gThrCreateSuspendedEds(
char *pName, // The Name of the thread
void(*pFun) (void *pPar), // The thread function itself
void *pPar, // The parameter data
unsigned StackSize, // The size of the stack
uint8 t Priority); // The priority
__eds___ unsigned* Stack);// Pointer to the stack

Description

This function will create a thread suspended to be management by Q-Kernel.
When the system is not yet started it will create the memory structures and other
control information. The function executes the following steps:

e Allocates the TCB and the thread stack in EDT memory
e Populate the TCB

e Add the TCB to the hibernate list

e Returns the pointer to the TCB

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 216

Q=Kernel

Reference Guide

Parameters

Parameter

Description

Returns pTCB

The function returns a pointer to the Thread
Control Block of the created thread.

char *pName

The name of the thread. The name must be unique
within other thread objects or qNO_NAME which is
a null pointer. qThrOpen() can be used to locate
the Thread if the name is not a null pointer.

void(*pFun)(void *pPar)

The function that contains the code of the thread.

void *pPar

The parameter that is provided to the thread. This
can be a pointer or any other type that fits in the
pointer.

unsigned StackSize

The size of the stack. This memory is allocated
from variable memory.

uint8_t Priority

The priority from 1 to 250. The higher the number
the higher the priority.

___eds___ unsigned* Stack

A pointer to the stack. Its the developer
responsibility to manage the EDS memory and
define the correct stack

Error conditions

Error

Description

gERR_THR_ISR

The function is called from an ISR.

gERR_THR_STACK

The stack size is smaller then 16 bytes.

gERR_THR_PRIO

The thread priority is O or greater than 250

gERR_THR_NAME_IN_USE

A thread with that name already exists

gERR_THR_NO_SHARED_S
TACK_SIZE

The stack is larger than the specified shared stack
size.

gERR_THR_NO_EDS

There is no EDS memory available

gERR_THR_MEMORY

There is no memory available to handle the
request.

The developer must give every thread a unique name or no name at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 217

Q=Kernel Reference Guide

180. qThrCurrent

pTCB gThrCurrent(); // Return the current TCB

No preemption

Description

This function will return a pointer to the current TCB.

Parameters
Parameter Description
Returns pTCB The function returns a pointer to the Thread
Control Block of the current thread.

Error conditions

Error Description

gERR_THR_ISR The function is called from an ISR.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 218

Q=Kernel Reference Guide

181.gThrEvtClear

unsigned gThrEvtClear(
pTCB pTchb, // The thread event to clear
unsigned EventFlags); // The flags to clear

No preemption

Description

Clears one or more event flags in the thread event set. The function returns the
events flags before the clear.

This is also the mechanism to get the event flags without changing the event flags.
See the example below:

unsigned flags; // variable to return the
flags

pTCB p; // Set by create or open

flags = qThrEvtClear(p,0) // Null does not clear anything. It

Parameters and return value

Parameter Description
Returns unsigned Returns the event flags before the clear operation.
pTCB pTcb A pointer to the thread control block. Must be

returned from qThrCreate() or from qThrOpen()
with the correct name. Use the function
qThrCurrent() to provide the thread control block
of the current thread.

unsigned EventFlags The event flags to clear. A value of zero does not
clear anything.

Error conditions

Error Description
gERR_THR_ISR The function is called from an ISR.
gqERR_THR_ID The object is not a thread object, has not been

created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 219

Q=Kernel Reference Guide

182. gThrEvtSignal

void qThrEvtSignal(
qtTHR pThr, // The thread event set to signal
unsigned EventFlags);// The flags to set

No preemption

Description

Set one or more event flags in the thread event set. The thread can use this
function to set its own event set flags. After the flags are set the thread is
evaluated to see if they match the wait criteria. If it matches the wait criteria and it
will get the ready state and if it has the highest priority it will be selected to run.

If this function is called from an ISR the system will evaluate if it can execute the
request immediately. If that's not possible it will spawn the request and will
execute it if all interrupt requests are serviced.

Parameters and return value

Parameter Description

pTCB pTcb A pointer to the thread control block. Must be
returned from qThrCreate() or from qThrOpen()
with the correct name. Use the function
qThrCurrent() to provide the thread control block
of the current thread.

unsigned EventFlags The event flags to set. At least one flag should be
set.

Error conditions

Error Description

gqERR_THR_ID The object is not a thread object, has not been
created or points to no object at all.

gERR_THR_NO_FLAGS Not one flag in EventFlags is set

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 220

Q=Kernel Reference Guide

183. gThrEvtWait

unsigned gThrEvtwait(
unsigned EventFlags, // The flags to wait for
uint8_t WaitType); // The type of wait (see below)

Possible preemption

Description

Wait for a specific set of thread event flags to be set. The required flags are
specified in EventFlags. The function can wait for all specified flags set or any of
the flags set. The developer can specify if the flags need to be cleared if the wait is
over.

There is also a non-blocking version of this function. The non-blocking function is
faster. Use this function if the size of the code is a concern and this function is
already used in another place in the application because using both functions
doubles the flash footprint.

Parameters and return value

Parameter Description

Returns unsigned Returns O if the function timed out or the events
flags that waked-up the thread before the optional
clear if the function is successful.

unsigned EventFlags The event flags to wait for. At least one flag must
be set.
uint8_t WaitType The type of wait. The following are defined.

WAIT_TYPE_ALL means wait until all flags are set.
This is also called the AND scenario.

WAIT_TYPE_ALL_CLEAR means wait until all flags
are set and if this situation occurs reset the flags
that the thread was waiting for.

WAIT_TYPE_ANY means wait until one of the flags
is set. This is also called the OR scenario.

WAIT_TYPE_ANY_CLEAR means wait until one of
the flags is set and if this situation occurs reset the
flags that triggered this operation. So not all flags
that the thread was waiting for are reset.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 221

Q=Kernel Reference Guide

Error conditions

Error Description

gERR_THR_ISR The function is called from an ISR.

gERR_THR_NO_START The function is called before Q=Kernel is started.

gqERR_THR_FBR The function is called from a fiber which is not
supported because fibers don't support blocking.

gERR_THR_NO_FLAGS No flags in the EventFlags parameter is set

qERR_THR_WAIT_TYPE The event type is incorrect

gERR_THR_CRITICAL This function cannot be called from within a critical
section.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 222

Q=Kernel

Reference Guide

184. qThrEvtWaitNB

unsigned gqThrEvtWaitNB(
unsigned EventFlags, // The flags to wait for
uint8 _t WaitType);

// The type of wait (see below)

Description

No preemption

This function will check if a specific set of thread event flags are set. The required
flags are specified in EventFlags. The function returns immediately. The developer
can specify if the flags need to be cleared if the wait is over.

This is the faster non-blocking version of qThrEvtWait(). Use qThrEvtWait() if the
size of the code is a concern and qThrEvtWait() is already used in another place in
the application because using both functions doubles the flash footprint.

Parameters and return value

Parameter

Description

Returns unsigned

Returns O if the function timed out or the events
flags that waked-up the thread before the optional
clear if the function is successful.

unsigned EventFlags

The event flags to wait for. At least one flag must
be set.

uint8_t WaitType

The type of wait. The following are defined.

WAIT_TYPE_ALL means wait until all flags are set.
This is also called the AND scenario.

WAIT_TYPE_ALL_ CLEAR means wait until all flags
are set and if this situation occurs reset the flags
that the thread was waiting for.

WAIT_TYPE_ANY means wait until one of the flags
is set. This is also called the OR scenario.

WAIT_TYPE_ANY_CLEAR means wait until one of
the flags is set and if this situation occurs reset the
flags that triggered this operation. So not all flags
that the thread was waiting for are reset.

Error conditions

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353 page 223

Q=Kernel Reference Guide

Error Description

gERR_THR_ISR The function is called from an ISR.
gERR_THR_NO_START The function is called before Q=Kernel is started.
gERR_THR_NO_FLAGS No flags in the EventFlags parameter is set
qERR_THR_WAIT_TYPE The event type is incorrect

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 224

Q=Kernel Reference Guide

185. qThrEvtWaitTO

unsigned gThrEvtwaitTO(
unsigned EventFlags, // The flags to wait for
uint8_t WaitType, // The type of wait (see below)
int32_t TimeOut); // The time out

Possible preemption

Description

Wait for a specific set of thread event flags to be set. The required flags are
specified in EventFlags. The function can wait for all specified flags set or any of
the flags set. The developer can specify if the flags need to be cleared if the wait is
over.

There is also a non-blocking version of this function. The non-blocking function is
faster. Use this function if the size of the code is a concern and this function is
already used in another place in the application because using both functions
doubles the flash footprint.

Parameters and return value

Parameter Description

Returns unsigned Returns O if the function timed out or the events
flags that waked-up the thread before the optional
clear if the function is successful.

unsigned EventFlags The event flags to wait for. At least one flag must
be set.
uint8_t WaitType The type of wait. The following are defined.

WAIT_TYPE_ALL means wait until all flags are set.
This is also called the AND scenario.

WAIT_TYPE_ALL_CLEAR means wait until all flags
are set and if this situation occurs reset the flags
that the thread was waiting for.

WAIT_TYPE_ANY means wait until one of the flags
is set. This is also called the OR scenario.

WAIT_TYPE_ANY_CLEAR means wait until one of
the flags is set and if this situation occurs reset the
flags that triggered this operation. So not all flags
that the thread was waiting for are reset.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 225

Q=Kernel

Reference Guide

Parameter

Description

int32_t TimeOut

A positive timeout value specifies a short wait-time
in cycles. We advise to use the macros qUSEC()
and gMSEC() so the value is independent of the
system clock. The minimum is 1 pSecond.

A negative value specifies the real-time wait time
in seconds. The macro’s qSEC() and gDTM() are
available for specifying the wait-time in seconds
and for specific times based on year, month, day,
hour, minute and second.

Error conditions

Error

Description

gERR_THR_ISR

The function is called from an ISR.

gERR_THR_NO_START

The function is called before Q-Kernel is started.

gERR_THR_FBR

The function is called from a fiber which is not
supported because fibers don't support blocking.

gERR_THR_NO_FLAGS

No flags in the EventFlags parameter is set

gERR_EVT_WAIT_TYPE

The event type is incorrect

gERR_THR_CRITICAL

This function cannot be called from within a critical
section.

gERR_THR_NO_RTCC

The specified TimeOut requires a RTCC which is
not available. (QRTCC=0)

gERR_THR_NO_TIMER

The specified TimeOut requires a timer which is
not available. (qTIMER=0)

gERR_THR_TIMEOUT

The specified TimeOut is smaller than 1 pSecond.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353

page 226

Q=Kernel Reference Guide

186. qThrOpen

pTCB qThrOpen(// Retuns NULL when timed-out
char *pName); // The Name of the thread

Possible preemption

Description

This function returns a pointer to an existing thread. If the thread is created before
this function is executed the function returns immediately. If the thread with that
name does not exist the thread is suspended.

The function needs memory for its operation, that’s being freed when qThrCreate()

activates the thread. It tries to allocate memory from the variable memory pool or
the heap.

If this fails the system throws the error to indicate failure. To prevent this error it is
a good practice to create enough objects during initialization.

Parameters and return value

Parameter Description
Returns pTCB The function returns a pointer to the thread control
block. If the pointer is a null pointer the function
timed-out.
char *pName The name of the object to open. Objects without a
name, dNO_NAME or a NULL pointer, cannot be
opened.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 227

Q=Kernel Reference Guide

Error conditions

Error Description

gERR_THR_ISR The function is called from an ISR.

gERR_THR_NO_START The function is called before Q=Kernel is started.

gqERR_THR_FBR The function is called from a fiber which is not
supported because fibers don't support blocking.

gERR_THR_NO_NAME Threads without a name can’t be opened.

gqERR_THR_CRITICAL This function cannot be called from within a critical
section.

gERR_THR_MEMORY There is no memory available to handle the open

request. All open functions return the same error.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 228

Q=Kernel

Reference Guide

187.gThrOpenNB

pTCB qThrOpenNB(
char *pName);

//
// The name of the thread

Description

No preemption

This function returns a pointer to an existing thread object.

Parameters and return value

Parameter

Description

Returns pTCB

The function returns a pointer to the thread object.
The function returns NULL if the object does not
exist.

char *pName

The name of the object to open. Objects without a
name, dNO_NAME or a NULL pointer, cannot be
opened.

Error conditions

Error

Description

gERR_THR_ISR

The function is called from an ISR.

gERR_THR_NO_NAME

Threads without a name can’t be opened.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 229

Q=Kernel Reference Guide

188. qThrOpenTO

pTCB gThrOpenTO(// Retuns NULL when timed-out
char *pName, // The Name of the object
Iint32_t TimeOut); // The timeout

Possible preemption

Description

This function returns a pointer to an existing object. If the object is created before
this function is executed the function returns immediately. If the object with that
name does not exists the threads is suspended. The timeout specifies how long the
thread is willing to wait.

The function needs memory for its operation, that’s being freed when qThrCreate()
activates the thread. It tries to allocate memory from the variable pool or from the
heap. If this fails the system throws the error to indicate failure. To prevent this
error it is a good practice to create enough objects during initialization.

Parameters and return value

Parameter Description

Returns pTCB The function returns a pointer to the thread object.
If the pointer is null the function timed-out.

char *pName The name of the object to open. Objects without a
name, dNO_NAME or a NULL pointer, cannot be
opened.

int32_t TimeOut A positive timeout value specifies a short wait-time

in cycles. We advise to use the macros qUSEC()
and gMSEC() so the value is independent of the
system clock. The minimum is 1 pSecond.

A negative value specifies the real-time wait time
in seconds. The macro’s qSEC() and gDTM() are
available for specifying the wait-time in seconds
and for specific times based on year, month, day,
hour, minute and second.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 230

Q=Kernel Reference Guide

Error conditions

Error Description

gERR_THR_ISR The function is called from an ISR.

gERR_THR_NO_START The function is called before Q=Kernel is started.

gqERR_THR_NO_NAME Objects without a name can’t be opened.

gERR_THR_NO_RTCC The specified TimeOut requires a RTCC which is
not available. (QRTCC=0)

gqERR_THR_NO_TIMER The specified TimeOut requires a timer which is
not available. (qTIMER=0)

qERR_THR_TIMEOUT The specified TimeOut is smaller than 1 pSecond.

gqERR_THR_CRITICAL This function cannot be called from within a critical
section.

gERR_THR_MEMORY There is no memory available to handle the open
request.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 231

Q=Kernel

Reference Guide

189. gThrResume

void qThrResume(
pTCB pTch,
int reason);

// Wake-up a thread

// The TCB of the thread to wake-up
// The reason why the thread should
// be resumed

Description

Possible preemption

This function resumes a thread that waits or is suspended. If the thread is not
sleeping this function has no effect and does not set an error condition.

If this function is called from an ISR the system will evaluate if it can execute the
request immediately. If that's not possible it will spawn the request and will
execute it if all interrupt requests are serviced.

Parameters and return value

Parameter

Description

pTCB pTcb

A pointer to the thread control block. Must be
returned from qThrCreate() or from qThrOpen()
with the correct name. Use the function
qThrCurrent() to provide the thread control block
of the current thread.

int reason

The reason why the thread will be resumed. The
qThrSuspend() and the qgThrSleep() function will
return the reason after they have been resumed.

The value must be unequal to -1.

Error conditions

Error

Description

gERR_THR_ID

The thread control block is not a TCB, has not
been created or points to no TCB at all.

gERR_THR_REASON

The reason is -1

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 232

Q=Kernel Reference Guide

190. gThrResumeV4

void qThrResumeV4(// Wake-up a thread
pTCB pTcb);

Possible preemption

Description

This function resumes a suspended thread from an interrupt, fiber or thread. This
function does not has the ability to communicate a value to the resume function.
You have to use qThrSuspendV4() in conjection with this function

Parameters and return value

Parameter Description

pTCB pTcb A pointer to the thread control block. Must be
returned from qThrCreate() or from qThrOpen()
with the correct name. Use the function
qThrCurrent() to provide the thread control block
of the current thread.

Error conditions

This function does not test for any errors

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 233

Q=Kernel

Reference Guide

191. gThrSetPriority

pTCB pTchb,

uint8_t Priority);

void qThrSetPriority(// Set the priority for a thread

// The TCB of the thread
// The new priority

Description

Possible preemption

This function set the priority for a thread. The thread can set its own priority by
specifying qThrCurrent() in the pTCB argument.

Parameters and return value

Parameter

Description

pTCB pTcb

A pointer to the thread control block. Must be
returned from qThrCreate() or from qThrOpen()
with the correct name. Use the function
qThrCurrent() to provide the thread control block
of the current thread.

uint8_t Priority

The priority of the thread. Must be between 1 and
250 inclusive.

Error conditions

Error

Description

gERR_THR_ISR

The function is called from an ISR.

gERR_THR_ID

The thread control block is not a TCB, has not
been created or points to no TCB at all.

gERR_THR_PRIO

The priority is out of range.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353 page 234

Q=Kernel Reference Guide

192.gThrSleep

int qThrSleep(// Let the thread sleep
Iint32_t Time); // Sleeptime In milliseconds

Thread Always preemption

Description

This function lets the current thread sleep for a specified time and returns an
indication if and why it was resumed.

Parameters and return value

Parameter Description

Returns unsigned The reason why the thread was resumed. The
function returns -1 if it was not resumed. All other
values means that the thread was resumed.

int32_t Time A positive timeout value specifies a short wait-time
in cycles. We advise to use the macros qUSEC()
and gMSEC() so the value is independent of the
system clock. The minimum is 1 pSecond.

A negative value specifies the real-time wait time
in seconds. The macro’s qSEC() and gDTM() are
available for specifying the wait-time in seconds
and for specific times based on year, month, day,
hour, minute and second.

Error conditions

Error Description
gERR_THR_ISR The function is called from an ISR.
gERR_THR_NO_START The function is called before Q-Kernel is started.
gqERR_THR_FBR The function is called from a fiber which is not

supported because fibers don't support blocking.

qERR_THR_ID The object is not a queue object, has not been
created or points to no object at all.

gERR_THR_NO_RTCC The specified TimeOut requires a RTCC which is
not available. (QRTCC=0)

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 235

Q=Kernel Reference Guide

Error Description
gERR_THR_NO_TIMER The specified TimeOut requires a timer which is
not available. (qTIMER=0)
qERR_THR_TIMEOUT The specified TimeOut is smaller than 1 pSecond.
gqERR_THR_CRITICAL The function is called within a critical section.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 236

Q=Kernel

Reference Guide

193. gThrStack

pTCB pTcb);

unsigned qThrStack(// Returns the stack-size iIn use
// The TCB of the thread

Description

No preemption

This function returns the maximum number of bytes that has been in use on the

stack until now.

The function is not deterministic and should not used in production systems. This
function is normally used in debug sessions.

Parameters and return value

Parameter

Description

Returns unsigned

This function returns the maximum number of
bytes that has been in use on the stack until now.

pTCB pTcb

A pointer to the thread control block. Must be
returned from qThrCreate() or from qThrOpen()
with the correct name. Use the function
qThrCurrent() to provide the thread control block
of the current thread.

Error conditions

Error

Description

gERR_THR_ISR

The function is called from an ISR.

gERR_THR_ID

The thread control block is not a TCB, has not
been created or points to no TCB at all.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353 page 237

Q=Kernel Reference Guide

194. gThrStatCycles

uinté4_t gThrStatCycles(
pTCB pTcb); // The TCB of the thread

No preemption

Description

This function returns the total number of cycles since the start of the statistic
gathering for the specified thread.

Parameters
Parameter Description
Returns uint64_t The number of cycles
pTCB pTcb A pointer to the thread control block. Must be

returned from qThrCreate() or from qThrOpen()
with the correct name. Use the function
qThrCurrent() to provide the thread control block
of the current thread.

Error conditions

Error Description
gERR_THR_ISR The function is called from an ISR.
gERR_THR_ID The thread control block is not a TCB, has not

been created or points to no TCB at all.

gERR_THR_STAT_OFF Statistics is not running

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 238

Q=Kernel Reference Guide

195. gThrSuspend

int qThrSuspend(); // Returns reason

Always preemption

Description

This function returns suspend a waiting or ready thread. The thread can only be
activated by the gThrResume() function.

Parameters and return value

Parameter Description

Returns int The reason why the thread was resumed.

Error conditions

Error Description
gERR_THR_NO_START The Kernel is not yet started.
gERR_THR_ISR The function is called from an ISR.
gERR_THR_FIBER The function tries to suspend while in a fiber.
gERR_THR_CRITICAL The function is called while in a critical section.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 239

Q=Kernel Reference Guide

196. qThrSuspendv4
void gThrSuspendv4();

Always preemption

Description

This function suspend a running. The thread can only be activated by the
qThrResumeV4() function.

Parameters and return value
No parameters and no return value
Error conditions

No parameters or state is tested

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 240

Q=Kernel Reference Guide

197.gThrTagGet

unsigned gThrTagGet(
unsigned Tag); // The tag to set

No preemption

Description

This function returns the tag form the thread control block of the current tread.

Parameters and return value

Parameter Description

Returns unsigned The existing tag.

Error conditions

Error Description

gERR_THR_ISR The function is called from an ISR

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 241

Q=Kernel

Reference Guide

198. qThrTagSet

unsigned gThrTagSet(
unsigned Tag);

// The tag to set

Description

No preemption

This function set a tag in the thread control block of the current tread and returns

the existing tag.

Parameters and return value

Parameter

Description

Returns unsigned

The existing tag before it was over-written by the
new tag.

unsigned Tag

The tag to set

Error conditions

Error

Description

gERR_THR_ISR

The function is called from an ISR

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 242

Q=Kernel Reference Guide

199. gThrTracking

void qThrTrack(
pTCB pTch, // The TCB of the thread
unsigned *pAddr, // The address of the bit to set/clr
unsigned BitNbr);// The bit number

No preemption

Description

This function enables or disables tracking for threads. The address and the bit-
number specify which bit to set or clear. If the address points to is one of the 1/0
ports the developer is responsible for setting the TRIS for that port.

Tracking need to be configured for this function to work.

Parameters and return value

Parameter Description

pTCB pTcb A pointer to the thread control block. Must be
returned from qThrCreate() or from qThrOpen()
with the correct name. Use the function
qThrCurrent() to provide the thread control block
of the current thread.

unsigned *pAddr The address of the bit to set or to clear. A value of
O disables the tracking. If tracking is disabled it
will execute the same number of cycles as
enabled.

unsigned BitNbr The bit-number. Valid values are 0 to 15 for the 16
bit version and O to 31 for the 32 bit version.

Error conditions

Error Description
gERR_THR_ISR The function is called from an ISR
gERR_THR_BIT_NBR Bit number is invalid

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 243

Q=Kernel Reference Guide

200. qThrYield

void qThrYield(Q); // Yield the thread

Possible preemption

Description

This function yields a thread. This function only as meaning is there are threads
with the same priority. The developer can implement corporative scheduling with
this function. This is not recommended. Other mechanisms like fibers are in most
cases more suitable.

Parameters and return value

This function does not require any parameters or return values.

Error conditions

Error Description
gERR_THR_ISR The function is called from an ISR.
gERR_THR_NO_START The function is called before Q-Kernel is started.
gERR_THR_FBR The function is called from a fiber which is not
supported because fibers don't support blocking.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 244

Q=Kernel Reference Guide

201. qTimCycles

uinté4_t gTimCycles();// Returns up-time in cycles

No preemption

Description

This function returns the number of cycles that the system is up. All time funcions
are based on cycles and an MCU that run at 100MHz overflows after 5,840 years so
this function has a large range.

This function requires the kernel keep track off individual cycles which it can then
convert to uSec. See the function gKkrnUSecOn().

Parameters and return value

Parameter Description

Returns uint64_t The number of cycles the system is up

Error conditions

Error Description

gERR_TMR_ISR The function is called from an ISR.

gERR_TMR_NO_USEC The code that keeps track of pSeconds is not
enabled. Use gKrnUSecOn() to start the uSecond
tracking.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 245

Q=Kernel Reference Guide

202. qTimMSec

uinté4_t gTimMSec();// Returns system up-time in mSec

No preemption

Description

This function returns the number of mSec that the system is up. All time funcions
are based on cycles and an MCU that run at 100MHz overflows after 5,840 years so
this function has a large range.

This function requires the kernel keep track off individual cycles which it can then
convert to uSec. See the function gKkrnUSecOn().

Parameters and return value

Parameter Description

Returns uint64_t The number of mSec the system is up

Error conditions

Error Description

gERR_TMR_ISR The function is called from an ISR.

gERR_TMR_NO_USEC The code that keeps track of pSeconds is not
enabled. Use gKrnUSecOn() to start the uSecond
tracking.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 246

Q=Kernel Reference Guide

203.qTimUSec

uinté4_t gTimUSec();// Returns system up-time in pSec

No preemption

Description

This function returns the number of pSec that the system is up. All time funcions
are based on cycles and an MCU that run at 100MHz overflows after 5,840 years so
this function has a large range.

This function requires the kernel keep track off individual cycles which it can then
convert to uSec. See the function gKkrnUSecOn().

Parameters and return value

Parameter Description

Returns uint64_t The number of pSec the system is up

Error conditions

Error Description

gERR_TMR_ISR The function is called from an ISR.

gERR_TMR_NO_USEC The code that keeps track of pSeconds is not
enabled. Use gKrnUSecOn() to start the uSecond
tracking.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 247

Q=Kernel Reference Guide

204. qTmrClose

void gqTmrClose(
PTMR pTmr); // The timer to close

Critical Section | Fiber No preemption

Description

Stops and closes a timer and returns the resources back to the resource pool. It is
the developer responsibility to make sure that the timer is not used. The system
will invalidate the object so other function can’t use the object accidentally.

Parameters and return value

Parameter Description

PTMR pTmr A pointer to the object. Must be returned from the
gTmrCreate() or qTmrOpen() function with the
correct name.

Error conditions

Error Description
gERR_TMR_ISR The function is called from an ISR.
qERR_TMR_ID The object is not a timer object, has not been
created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 248

Q=Kernel Reference Guide

205. gTmrCreate
pTMR gTmrCreate(

char *pName, // The Name of the timer
void (*pFbr)(void *p), // The function to call

void *pParanm, // The parameter when called
TMR_TYPE TimerType, // Timer options

int32_t Time); // The number of seconds

// or cycles before the
// timer signals the event

Possible preemption

Description

Before a timer can be used, it has to be created by calling this function. The
creating thread or fiber specifies the name for the timer object, the fiber function,
timer type and the time the timer expires. If there is an open request for the timer
with this name that thread will be readied, which creates a possible preemption.
Multiple threads can wait for the object to be created and all threads will be
readied.

The function needs memory for its operation, that’s being freed when qTmrClose()
end the use of the timer. The function tries to allocate memory from the variable
pool or from the heap. If this fails the system throws the error to indicate failure.
To prevent this error it is a good practice to create enough objects during
initialization.

Parameters and return value

Parameter Description
Returns pTMR The function returns a pointer to the timer object.
char *pName The name of the timer. The name must be unique

within other timer objects or gqNO_NAME which is a
null pointer. qTmrOpen() can be used to locate the
object if the name is not a null pointer.

void (*pFbr)(void *p) The function to call after the time expires

void *pParam The parameter for the function. This allows to
share the function for several timers

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 249

Q=Kernel Reference Guide

Parameter Description
pTMR_TYPE TimerType The timer type options.
e qTMR_TYPE_PERIODIC specifies a periodic
timer.
e QTMR_TYPE_ONE_SHOT specifies a one shot
timer.

e gTMR_TYPE_PERIODIC_MANUAL_START
specifies a periodic timer that must be started
manual.

e qQTMR_TYPE_ONE_SHOT_MANUAL_START
specifies a one shot timer that must be started
manual.

int32_t Time A positive timeout value specifies a short wait-time
in cycles. We advise to use the macros qUSEC()
and gMSEC() so the value is independent of the
system clock. The minimum is 1 pSecond.

A negative value specifies the real-time wait time
in seconds. The macro’s qSEC() and gDTM() are
available for specifying the wait-time in seconds
and for specific times based on year, month, day,
hour, minute and second.

Error conditions

Error Description

gERR_TMR_ISR The function is called from an ISR.

qERR_TMR_NAME_IN_USE The name is already in use for another timer
object

gERR_TMR_TYPE The type is not valid

gERR_TMR_FUNCTION No function specified.

qERR_TMR_TIME The time is incorrect.

gERR_TMR_MEMORY There is no memory available to handle the
request.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 250

Q=Kernel Reference Guide

206. gTmrOpen

pPTMR gTmrOpen(// Retuns NULL when timed-out
char *pName); // The Name of the timer

Thread Possible preemption

Description

This function returns a pointer to an existing timer object. If the object is created
before this function is executed the function returns immediately. If the object with
that name does not exists the threads is suspended.

The function needs memory for its operation, that’'s being freed when gTmrCreate()
activates the thread. It tries to allocate memory from the variable pool or from the
heap. If this fails the system throws the error to indicate failure. To prevent this
error it is a good practice to create enough objects during initialization.

Parameters and return value

Parameter Description
Returns pTMR The function returns a pointer to the timer object.
If the pointer is a null pointer the function timed-
out.
char *pName The name of the object to open. Objects without a
name, a NULL pointer, cannot be opened.

Error conditions

Error Description

gqERR_TMR_ISR The function is called from an ISR.

gqERR_TMR_NO_START The function is called before Q-Kernel is started.

gERR_TMR_FBR The function is called from a fiber which is not
supported because fibers don't support blocking.

gqERR_TMR_NO_NAME Timers without a name can’t be opened.

gERR_TMR_CRITICAL This function cannot be called from within a critical
section.

qERR_TMR_MEMORY There is no memory available to handle the open

request. All open functions return the same error.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 251

Q=Kernel Reference Guide

207.9gTmrOpenNB

pPTMR gTmrOpenNB(//
char *pName); // The Name of the timer

No preemption

Description

This function returns a pointer to an existing timer object.

Parameters and return value

Parameter Description
Returns pTMR The function returns a pointer to the timer object.
The function returns NULL if the object does not
exist.
char *pName The name of the object to open. Objects without a
name, dNO_NAME or a NULL pointer, cannot be
opened.

Error conditions

Error Description
gERR_TMR_ISR The function is called from an ISR.
gqERR_TMR_NO_NAME Timers without a name can’t be opened.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 252

Q=Kernel Reference Guide

208.gTmrOpenTO

pPTMR gTmrOpenTO(// Retuns NULL when timed-out
char *pName, // The Name of the object
Iint32_t TimeOut); // The timeout

Possible preemption

Description

This function returns a pointer to an existing object. If the object is created before
this function is executed the function returns immediately. If the object with that
name does not exists the threads is suspended. The timeout specifies how long the
thread is willing to wait.

The function needs memory for its operation, that’'s being freed when gTmrCreate()
activates the thread. It tries to allocate memory from the variable pool or from the
heap. If this fails the system throws the error to indicate failure. To prevent this
error it is a good practice to create enough objects during initialization.

Parameters and return value

Parameter Description

Returns pTMR The function returns a pointer to the timer object.
If the pointer is null the function timed-out.

char *pName The name of the object to open. Objects without a
name, dNO_NAME or a NULL pointer, cannot be
opened.

int32_t TimeOut A positive timeout value specifies a short wait-time

in cycles. We advise to use the macros qUSEC()
and gMSEC() so the value is independent of the
system clock. The minimum is 1 pSecond.

A negative value specifies the real-time wait time
in seconds. The macro’s qSEC() and gDTM() are
available for specifying the wait-time in seconds
and for specific times based on year, month, day,
hour, minute and second.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 253

Q=Kernel Reference Guide

Error conditions

Error Description

gERR_TMR_ISR The function is called from an ISR.

gERR_TMR_NO_START The function is called before Q=Kernel is started.

gqERR_TMR_NO_NAME Objects without a name can’t be opened.

gERR_TMR_NO_RTCC The specified TimeOut requires a RTCC which is
not available. (QRTCC=0)

gERR_TMR_NO_TIMER The specified TimeOut requires a timer which is
not available. (qTIMER=0)

gERR_TMR_TIMEOUT The specified TimeOut is smaller than 1 pSecond.

gqERR_TMR_CRITICAL This function cannot be called from within a critical
section.

gERR_TMR_MEMORY There is no memory available to handle the open
request.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 254

Q=Kernel Reference Guide

209. gTmrStart

void gqTmrStart(
PTMR pTmr); // The timer to start

No preemption

Description

This function starts a timer after it is stopped. If the timer is still running it just
calculates the new expire time and activates the timer.

This function is normally used to start a one-shot timer but it can be used to start
every stopped timer.

If this function is called from an ISR the system will evaluate if it can execute the
request immediately. If that's not possible it will spawn the request and will
execute it if all interrupt requests are serviced.

Parameters and return value

Parameter Description

PTMR pTmr A pointer to the timer object. Must be returned
from gTmrCreate() or gTmrOpen() with the correct
name.

Error conditions

Error Description

qERR_TMR_ID The object is not a timer object, has not been
created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 255

Q=Kernel Reference Guide

210.gTmrStop

void qTmrStop(
PTMR pTmr); // The timer to stop

Possible preemption

Description

This function stops a timer after it expires.

Parameters and return value

Parameter Description

PTMR qTmr A pointer to the timer object. Must be returned
from gTmrCreate() or gTmrOpen() with the correct
name.

Error conditions

Error Description

qERR_TMR_ID The object is not a timer object, has not been
created or points to no object at all.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 256

Q=Kernel Reference Guide

211. gWrdClr

void gqWrdClr(
unsigned* From, // From address
unsigned Len); // Length In number of bytes

No preemption

Description

This function clears (filled with all O bits) an array of unsigned intergers. These
functions are optimized for the type of processor and operate much faster then the
C functions.

Parameters and return value

Parameter Description
unsigned* From From address
unsigned Len The length in bytes

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 257

Q=Kernel

Reference Guide

212. qWrdDecAtomic

void gWrdDecAtomic(
unsigned* p)

// Address for the operation

Description

No preemption

This function decrement the integer location pointed by p atomiccaly. An atomic
operation is an operation that will always be executed without any other thread,
fiber or interrupt being able to change the value during the operation.

Parameters and return value

Parameter

Description

unsigned* p

Pointer to the location of the operation

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353

page 258

Q=Kernel

Reference Guide

213. gWrdIncAtomic

void gWrdIncAtomic(
unsigned* p)

// Address for the operation

Description

No preemption

This function increment the integer location pointed by p atomiccaly. An atomic
operation is an operation that will always be executed without any other thread,
fiber or interrupt being able to read or change the value during the operation.

Parameters and return value

Parameter

Description

unsigned* p

Pointer to the location of the operation

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353

page 259

Q=Kernel Reference Guide

214. qWrdMov

void gqWrdMov(
unsigned* From, // From address
unsigned* To, // To address
unsigned Len); // Length in number of bytes

No preemption

Description

This function moves unsigned intergers from a From location to a To location. Both
locations can not overlap. This is not tested and the responsibility of the developer.

These functions are optimized for the type of processor and operate much faster
then the C functions.

Parameters and return value

Parameter Description
unsigned* From From address
unsigned> To To address
unsigned Len The length in bytes

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 260

Q=Kernel Reference Guide

215. gWrdSet

void gqWrdSet(
unsigned* From, // From address
unsigned Len); // Length In number of bytes

No preemption

Description

This function set (filled with all 1 bits) an array of unsigned intergers. These
functions are optimized for the type of processor and operate much faster then the
C functions.

Parameters and return value

Parameter Description
unsigned* From From address
unsigned Len The length in bytes

Error conditions

None

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 261

Q=Kernel

Reference Guide

216. Errors

Event errors

Error Description Error#

qERR_EVT_ID The object is not an event object, has not | 0x1100
been created or points to no object at all.

gERR_EVT_NO_START The function is called before Q-Kernel is | 0x1101
started.

gERR_EVT_ISR The function is called from an ISR. 0x1102

gqERR_EVT_FBR The function is called from a fiber which | 0x1103
is not supported because fibers don't
support blocking.

qERR_EVT_TIMEOUT The specified TimeOut is smaller than 1 | 0x1105
pSecond.

qERR_EVT_MEMORY There is no memory available to handle | 0x1106
the open request.

gERR_EVT_NAME_IN_USE The name is already in use for another | 0x1107
object.

gERR_EVT_NO_NAME Events without a name can’t be opened. 0x1108

gqERR_EVT_CRITICAL This function cannot be called from within | 0x1109
a critical section.

gERR_EVT_NO_TIMER The specified TimeOut requires a timer | Ox110A
which is not available. (QTIMER=0)

gERR_EVT_NO_RTCC The specified TimeOut requires a timer | 0x110B
which is not available. (QTIMER=0)

qERR_EVT IN_USE One or more threads are waiting on the | 0x1110
event. The system can’t detect if other
thread are using this event. The system
will clear the object and use of the same
address most likely results in
qERR_EVT_ID.

gqERR_EVT_NO_FLAGS Not one flag in EventFlags is set. O0x1111

gqERR_EVT_STACK_LIMIT_1 0x1112

gqERR_EVT_STACK_LIMIT_2 0x1113

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353

page 262

Q=Kernel Reference Guide

Error Description Error#

qERR_EVT_WAIT_TYPE The event type is incorrect. 0x1114

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 263

Q=Kernel Reference Guide

Fiber errors

Error Description Error#

gERR_FBR_ISR The function is called from an ISR. 0x1210

gqERR_FBR_PRIO The priority is smaller than 1 or larger | 0x1211
than 4.

gqERR_FBR_MEMORY There is no memory available to handle | 0x1212
the open request.

gERR_FBR_BIT_NBR 0x1213

gqERR_FBR_THREAD The function is called from a thread or | Ox1214

before the system has started.

gERR_FBR_QUEUE_FULL The queue is full and the entry is no set. 0x1215

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 264

Q=Kernel

Reference Guide

Kernel errors

Error Description Error#
gERR_KRN_ISR The function is called from an ISR. 0x1310
gERR_KRN_MEM_SIZE There is not enough memory available to | 0x1311
initialize the system and the defined
objects.
gERR_KRN_STARTED The system was already started. 0x1312
gERR_KRN_NO_INIT The system did not initialize itself. The | 0x1313
function gKrnlnit() must be called before
this function.
qERR_KRN_TIMER 0x1314
gERR_KRN_STAT_TIMER 0x1315
gERR_KRN_SAME_TIMER 0x1316
gERR_KRN_INTERRUPT The kernel interrupt is the same as the | 0x1317
kernel timer interrupt.
gERR_KRN_NO_STAT The system is linked without statistics. 0x1318
gERR_KRN_STAT 0x1319
gERR_KRN_MEMORY There is no variable memory available to | 0x131B
handle the request.
gERR_KRN_MHZ 0x131C

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353

page 265

Q=Kernel

Reference Guide

Message Errors

Error Description Error#
qERR_MSG_ID The message is not a message returned | 0x1510

by gMsgAlloc() or gMsgCopy().
gqERR_MSG_ ISR The function is called from an ISR. 0x1511
gERR_MSG_SIZE The size is incorrect. 0x1512
© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 266

Q=Kernel

Reference Guide

Mutex Errors

Error Description Error#

qERR_MTX_ID The object is not a mutex object, has not | 0x1600
been created or points to no object at all.

gERR_MTX_NO_START The function is called before Q-Kernel is | 0x1601
started.

qERR_MTX_ISR The function is called from an ISR. 0x1602

gqERR_MTX_FBR The function is called from a fiber. Only | 0x1603
threads can own mutexes.

qERR_MTX_TIMEOUT The specified TimeOut is smaller than 1 | 0x1605
pSecond.

qERR_MTX_MEMORY There is no memory available to handle | 0x1606
the open request.

gqERR_MTX_NAME_IN_USE The name is already in use for another | 0x1607
object.

gqERR_MTX_NO_NAME Mutexes without a name can’t be opened. | 0x1608

gqERR_MTX_CRITICAL This function cannot be called from within | 0x1609
a critical section.

gqERR_MTX_NO_TIMER The specified TimeOut requires a timer | OX160A
which is not available. (qTIMER=0)

gERR_MTX_NO_RTCC The specified TimeOut requires a timer | 0x160B
which is not available. (QqTIMER=0)

gqERR_MTX_IN_USE A thread has locked the mutex so it can’t | 0x1610
be closed. The system can’t detect if
other threads are using this mutex.

gERR_MTX_LOCKED 0x1611

gERR_MTX_OWNER The mutex is not unlocked by the owner | 0x1612

of the mutex.

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353

page 267

Q=Kernel Reference Guide
Pipe Errors

Error Description Error#

qERR_PIP_ID The object is not a pipe object, has not | 0x1700
been created or points to no object at all.

gERR_PIP_NO_START The function is called before Q-Kernel is | 0x1701
started.

gqERR_PIP_ISR The function is called from an ISR. 0x1702

gqERR_PIP_FBR The function is called from a fiber which | 0x1703
is not supported because fibers don't
support blocking.

gqERR_PIP_TIMEOUT The specified TimeOut is smaller than 1 | 0x1705
pSecond.

gqERR_PIP_MEMORY There is no memory available to handle | 0x1706
the open request.

gqERR_PIP_NAME_IN_USE The name is already in use for another | 0x1707
object.

gqERR_PIP_NO_NAME Pipes without a name can’t be opened. 0x1708

gqERR_PIP_BLOCK_SIZE The blocks size is incorrect. 0x1709

gqERR_PIP_NO_TIMER The specified TimeOut requires a timer | Ox170A
which is not available. (qTIMER=0)

gERR_PIP_NO_RTCC The specified TimeOut requires a timer | 0x170B
which is not available. (QqTIMER=0)

gERR_PIP_MAX_BLOCK_SIZE 0x1710

gqERR_PIP_MAX_BLOCKS 0x1711

gERR_PIP_NBR_BLOCKS 0x1712

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 268

Q=Kernel

Reference Guide

Queue Errors

Error Description Error#

qERR_QUE_ID The object is not a queue object, has not | 0x1800
been created or points to no object at all.

gERR_QUE_NO_START The function is called before Q-Kernel is | 0x1801
started.

gERR_QUE_ISR The function is called from an ISR. 0x1802

gERR_QUE_FBR The function is called from a fiber which | 0x1803
is not supported because fibers don't
support blocking.

gERR_QUE_TIMEOUT The specified TimeOut is smaller than 1 0x1805
pSecond.

qERR_QUE_MEMORY There is no memory available to handle 0x1806
the request.

qERR_QUE_NAME_IN_USE The name is already in use for another 0x1807
object.

gERR_QUE_NO_NAME Message queues without a name can’t be | 0x1808
opened.

gERR_QUE_CRITICAL This function cannot be called from within | 0x1809
a critical section.

gERR_QUE_NO_TIMER The specified TimeOut requires a timer | Ox180A
which is not available. (QqTIMER=0)

gERR_QUE_NO_RTCC The specified TimeOut requires a timer | 0x180B
which is not available. (qTIMER=0)

gERR_QUE_IN_USE Other thread(s) are waiting for the 0x1810
queue. The system can’t detect of other
threads are using the queue.

gERR_QUE_NO_FLAGS No flags in the EventFlags parameter is 0x1811
set.

qERR_QUE_SIZE The size of the queue is incorrect. 0x1812

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353

page 269

Q=Kernel

Reference Guide

Semaphore Errors

the maximum.

Error Description Error#

qERR_SEM_ID The object is not a semaphore object, has | 0x1900
not been created or points to no object at
all.

gqERR_SEM_NO_START The function is called before Q-Kernel is | 0x1901
started.

gERR_SEM_ ISR The function is called from an ISR. 0x1902

qERR_SEM_FBR The function is called from a fiber which | 0x1903
is not supported because fibers don't
support blocking.

qERR_SEM_TIMEOUT The specified TimeOut is smaller than 1 0x1905
pSecond.

gERR_SEM_MEMORY There is no memory available to handle 0x1906
the request.

gqERR_SEM_NAME_IN_USE The name is already in use for another 0x1907
object.

gERR_SEM_NO_NAME Semaphores without a name can’t be 0x1908
opened.

gERR_SEM_CRITICAL This function cannot be called from within | 0x1909
a critical section.

gERR_SEM_NO_TIMER The specified TimeOut requires a timer | OX190A
which is not available. (qTIMER=0)

gERR_SEM_NO_RTCC The specified TimeOut requires a timer | 0x190B
which is not available. (QqTIMER=0)

gERR_SEM_IN_USE The semaphore object is in use by other 0x1910
threads or fibers. More specific other
threads are waiting for it. The system
can’t detect of other thread or fibers are
using this semaphore.

qERR_SEM_OVERFLOW The number of permits is greater than 0x1911

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353

page 270

Q=Kernel

Reference Guide

Thread Errors

Error Description Error#
qERR_THR_ID The thread control block is not a TCB, has | O0x1A00
not been created or points to no TCB at
all.
gERR_THR_NO_START The function is called before Q-Kernel is 0x1A01
started.
gERR_THR_ISR The function is called from an ISR. O0x1A02
gqERR_THR_FBR The function is called from a fiber which 0x1A03
is not supported because fibers don't
support blocking.
qERR_THR_TIMEOUT The specified TimeOut is smaller than 1 0x1A05
pSecond.
gERR_THR_MEMORY There is no memory available to handle 0x1A06
the open request. All open functions
return the same error.
gERR_THR_NAME_IN_USE A thread with that name already exists Ox1A07
gqERR_THR_NO_NAME Threads without a name can’t be opened. | Ox1A08
gqERR_THR_CRITICAL This function cannot be called from within | Ox1A09
a critical section.
gERR_THR_NO_TIMER The specified TimeOut requires a timer | OX1AOA
which is not available. (QqTIMER=0)
gERR_THR_NO_RTCC The specified TimeOut requires a timer | OX1A0B
which is not available. (qTIMER=0)
gqERR_THR_IN_USE The event object is in use by other 0x1A10
threads. More specific other thread(s) are
waiting for it. The system can’t detect if
other thread are using this event.
gERR_THR_PRIO The thread priority is O or greater than Ox1A11
250
gERR_THR_STACK The stack size is smaller than 16 bytes. Ox1A12
gERR_THR_CURRENT O0x1A13
gERR_THR_NO_FLAGS Not one flag in EventFlags is set. Ox1Al1l4
qERR_THR_WAIT_TYPE The event type is incorrect. Ox1A15

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353

page 271

Q=Kernel Reference Guide
Error Description Error#
qERR_THR_STAT_OFF The system is linked with statistics but 0x1A16

statistics are not enabled.
gqERR_THR_NO_STAT The system is linked without statistics. Ox1A17
gqERR_THR_WAIT_STATE 0x1A18
gqERR_THR_WAIT_OBJECT O0x1A19
gERR_THR_BIT_NBR Ox1A1A

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 272

Q=Kernel Reference Guide
Timer Errors
Error Description Error#
qERR_TMR_ID The object is not a timer object, has not 0x1B00
been created or points to no object at all.
gERR_TMR_NO_START The function is called before Q-Kernel is | 0x1B01
started.
gqERR_TMR_ISR The function is called from an ISR. 0x1B02
gERR_TMR_FBR The function is called from a fiber with 0x1B03
the option qTMR_SIGNAL_NOW. This
option can only be used from a thread.
Fibers includes all functions called from
fibers like qNtfSwitch() or expired timer
and alarm functions.
gERR_TMR_TIMEOUT The specified TimeOut is smaller than 1 0x1B05
pSecond.
qERR_TMR_MEMORY There is no memory available to handle 0x1B06
the open request. All open functions
return the same error.
gqERR_TMR_NAME_IN_USE The name is already in use for another 0x1B07
timer object.
gERR_TMR_NO_NAME Timers without a name can’t be opened. 0x1B08
qERR_TMR_CRITICAL This function cannot be called from within | Ox1B09
a critical section.
gERR_TMR_NO_TIMER The specified TimeOut requires a timer | Ox1BOA
which is not available. (QqTIMER=0)
gERR_TMR_NO_RTCC The specified TimeOut requires a timer | 0Ox1BOB
which is not available. (QqTIMER=0)
gqERR_TMR_IN_USE 0x1B10
gERR_TMR_SIGNAL_OPT The SignalOptions are invalid. 0x1B11
gERR_TMR_TYPE The type is not valid. 0x1B12
gERR_TMR_FUNCTION No function specified. 0x1B13
qERR_TMR_TIME The time is incorrect. 0x1B14
© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 273

Q=Kernel Reference Guide

Error Description Error#

gqERR_TMR_NO_USEC The code that keeps track of uSeconds is | Ox1B15
not enabled. Use gKrnUSecOn() to start
the pSecond tracking.

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 274

Q=Kernel

Reference Guide

Real Time Clock Errors

available. (qTIMER=0)

Error Description Error#
qERR_RTC_ID The object is not a timer object, has not 0x1C10
been created or points to no object at all.
gERR_RTC_NO_START The function is called before Q-Kernel is | 0x1C1l1
started.
gqERR_RTC_ISR The function is called from an ISR. 0x1C12
gERR_RTC_FBR The function is called from a fiber with 0x1C13
the option qTMR_SIGNAL_NOW. This
option can only be used from a thread.
Fibers includes all functions called from
fibers like qNtfSwitch() or expired timer
and alarm functions.
gERR_RTC 1 1 2010 Dates before 1-JAN-2010 are not allowed. | 0x1C15
gqERR_RTC_MEMORY There is no memory available to handle 0x1C16
the open request. All open functions
return the same error.
gqERR_RTC_NAME_IN_USE The name is already in use for another 0x1C17
timer object.
gERR_RTC_NO_NAME Timers without a name can’t be opened. 0x1C18
gqERR_RTC_CRITICAL This function cannot be called from within | O0x1C19
a critical section.
gqERR_RTC_EMULATION Ox1C1A
gERR_RTC_NO_RTCC This function requires a timer which is not | 0Ox1C1B

© 2008-2013 Quasarsoft Ltd.

gKernelRefGuide V6.0-3353

page 275

Q=Kernel Reference Guide
Publish/subscribe Errors

Error Description Error#

qERR_PUB_ID The object is not a publisher object, has 0x1D00
not been created or points to no object at
all.

gERR_PUB_NO_START The function is called before Q-Kernel is 0x1DO01
started.

gERR_PUB_ ISR The function is called from an ISR. 0x1D02

gqERR_PUB_FBR The function is called from a fiber which 0x1D03
is not allowed. Fibers includes all
functions called from fibers like
gNtfSwitch() or expired timer and alarm
functions.

gERR_PUB_TIMEOUT The specified TimeOut is smaller than 1 0x1D05
pSecond.

gERR_PUB_MEMORY There is no memory available to handle 0x1D06
the open request. All open functions
return the same error.

gERR_PUB_NAME_IN_USE The name is already in use for another 0x1DO07
publisher object.

gqERR_PUB_NO_NAME Publishers without a name can’t be 0x1D08
opened.

gERR_PUB_CRITICAL This function cannot be called from within | 0x1D09
a critical section.

gERR_PUB_NO_TIMER The specified TimeOut requires a timer | Ox1DOA
which is not available. (QTIMER=0)

gERR_PUB_NO_RTCC The specified TimeOut requires a timer | Ox1D0OB
which is not available. (QqTIMER=0)

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 276

Q=Kernel Reference Guide

Memory Errors

Error Description Error#
qERR_MEM_ID The object is not a memory object, has Ox1EOO0
not been created or points to no object at
all.
qERR_MEM_ ISR The function is called from an ISR. Ox1EO02
gERR_MEM_DAMAGE Ox1E10

© 2008-2013 Quasarsoft Ltd. gKernelRefGuide V6.0-3353 page 277

	1. qBitClr
	2. qBitClrAtomic
	3. qBitMemClrAtomic
	4. qBitMemSetAtomic
	5. qBitMemTglAtomic
	6. qBitMemTst
	7. qBitSet
	8. qBitSetAtomic
	9. qBitTgl
	10. qBitTglAtomic
	11. qBitTst
	12. qBytClr
	13. qBytDecAtomic
	14. qBytIncAtomic
	15. qBytMov
	16. qBytSet
	17. qCrcCalculate
	18. qCrcGet
	19. qCrtEnter
	20. qCrtExit
	21. qDivScaling
	22. qDivU3216
	23. qDivU3216R
	24. qDivU6416
	25. qDivU6416R
	26. qDtmAddDays
	27. qDtmAddHours
	28. qDtmAddMinutes
	29. qDtmAddSeconds
	30. qDtmAddYears
	31. qDtmDayOfWeek
	32. qDtmFromBcdDT
	33. qDtmFromYMDHMS
	34. qDtmToBcdDtm
	35. qEvtClear
	36. qEvtClose
	37. qEvtCreate
	38. qEvtOpen
	39. qEvtOpenNB
	40. qEvtOpenTO
	41. qEvtSignal
	42. qEvtWait
	43. qEvtWaitNB
	44. qEvtWaitTO
	45. qErrNotify
	46. qFbrCreate
	47. qFbrEnqueue0
	48. qFbrEnqueue1
	49. qFbrEnqueue2
	50. qFbrSpawnX (X = 1, 2, 3 or 4) (priority fibers)
	51. qFbrSpawnRtcc
	52. qFbrStatCycles
	53. qFixAlloc
	54. qFixAllocClr
	55. qFixCreate
	56. qFixClose
	57. qFixFree
	58. qHeaAlloc
	59. qHeaSize
	60. qKrnError
	61. qKrnInCritical
	62. qKrnInFiber
	63. qKrnInCritical
	64. qKrnInit
	65. qKrnInitEds
	66. qKrnNtfIdle
	67. qKrnNtfSwitch
	68. qKrnStack
	69. qKrnStart
	70. qKrnStatOff
	71. qKrnStatOn
	72. qKrnSwitchNotificationOff
	73. qKrnSwitchNotificationOn
	74. qKrnTrackingIdle
	75. qKrnTrackingRun
	76. qKrnTrackingSleep
	77. qKrnUSecOff
	78. qKrnUSecOn
	79. qKrnVersion
	80. qMemAlloc
	81. qMemAllocClr
	82. qMemAllocFromPool
	83. qMemAllocFromPoolClr
	84. qMemAllocFromPoolFast
	85. qMemFree
	86. qMemFreeFast
	87. qMemPool
	88. qMemPoolAdd
	89. qMemPoolNext
	90. qMemPoolSize
	91. qMemRealloc
	92. qMsgAlloc
	93. qMsgAllocFast
	94. qMsgCopy
	95. qMsgDataSize
	96. qMsgFixAlloc
	97. qMsgFixCreate
	98. qMsgFree
	99. qMsgMaxSize
	100. qMsgPublish
	101. qMsgRead
	102. qMsgReceive
	103. qMsgReceiveNB
	104. qMsgReceiveTO
	105. qMsgSend
	106. qMsgSendNB
	107. qMsgSendTO
	108. qMsgWrite
	109. qMtxClose
	110. qMtxCreate
	111. qMtxLock
	112. qMtxLockNB
	113. qMtxLockTO
	114. qMtxOpen
	115. qMtxOpenNB
	116. qMtxOpenTO
	117. qMtxOwner
	118. qMtxUnlock
	119. qPipBlockSize
	120. qPipClose
	121. qPipCreate
	122. qPipEntries
	123. qPipFreeBlocks
	124. qPipGet
	125. qPipGetBytFast
	126. qPipGetFast
	127. qPipGetWordFast
	128. qPipMaxBlocks
	129. qPipOpen
	130. qPipOpenNB
	131. qPipOpenTO
	132. qPipPut
	133. qPipPutBytFast
	134. qPipPutWrdFast
	135. qPipPutFast
	136. qPipRead
	137. qPipReadFast
	138. qPipWrite
	139. qPipWriteFast
	140. qPubClose
	141. qPubCreate
	142. qPubOpen
	143. qPubOpenNB
	144. qPubOpenTO
	145. qPubSubscribeFun
	146. qPubSubscribePip
	147. qPubSubscribeQue
	148. qPwrPermitIdle
	149. qPwrPermitSleep
	150. qPwrPreventIdle
	151. qPwrPreventSleep
	152. qQueClose
	153. qQueCreate
	154. qQueOpen
	155. qQueOpenNB
	156. qQueOpenTO
	157. qRanGet
	158. qRanNtfSeed
	159. qRtcAlarm
	160. qRtcGetDatTim
	161. qRtcGetUptime
	162. qRtcSetDatTim
	163. qSemAcquire
	164. qSemAcquireFast
	165. qSemAcquireNB
	166. qSemAcquireTO
	167. qSemClose
	168. qSemCreate
	169. qSemOpen
	170. qSemOpenNB
	171. qSemOpenTO
	172. qSemPermits
	173. qSemRelease
	174. qSemReleaseFast
	175. qThrClose
	176. qThrCreate
	177. qThrCreateEds (Only 16bit PIC’s with EDS)
	178. qThrCreateSuspended
	179. qThrCreateSuspendedEds (PIC’s with EDS)
	180. qThrCurrent
	181. qThrEvtClear
	182. qThrEvtSignal
	183. qThrEvtWait
	184. qThrEvtWaitNB
	185. qThrEvtWaitTO
	186. qThrOpen
	187. qThrOpenNB
	188. qThrOpenTO
	189. qThrResume
	190. qThrResumeV4
	191. qThrSetPriority
	192. qThrSleep
	193. qThrStack
	194. qThrStatCycles
	195. qThrSuspend
	196. qThrSuspendV4
	197. qThrTagGet
	198. qThrTagSet
	199. qThrTracking
	200. qThrYield
	201. qTimCycles
	202. qTimMSec
	203. qTimUSec
	204. qTmrClose
	205. qTmrCreate
	206. qTmrOpen
	207. qTmrOpenNB
	208. qTmrOpenTO
	209. qTmrStart
	210. qTmrStop
	211. qWrdClr
	212. qWrdDecAtomic
	213. qWrdIncAtomic
	214. qWrdMov
	215. qWrdSet
	216. Errors
	Event errors
	Fiber errors
	Kernel errors
	Message Errors
	Mutex Errors
	Pipe Errors
	Queue Errors
	Semaphore Errors
	Thread Errors
	Timer Errors
	Real Time Clock Errors
	Publish/subscribe Errors
	Memory Errors

